
If Layering is useful, why not Sublayering?
Rathin Singha†, Rishabh Iyer∗, Charles Liu†, Caleb Terrill†, Todd Millstein†, Scott Shenker∗, George Varghese†

†UCLA ∗UC Berkeley

ABSTRACT
The Internet’s success arose from classical layering: proto-
cols like TCP and Ethernet can be independently understood,
changed, debugged, verified, and offloaded to hardware using
a clean service interface between layers. To accrue the same
benefits at a finer grain, we suggest sublayering, i.e., layering
recursively within each layer. We show that the data link and
routing layers have natural sublayers. However, while TCP
intuitively decomposes into sub-functions (connection man-
agement, reliable delivery, congestion control) common state
variables like sequence numbers and window sizes entangle
these functions, making sublayering difficult. We propose an
alternate sublayered TCP with equivalent functionality which
enables easily changing congestion control and connection
management. We also argue that sublayering can help create
robust and verified Internet protocol implementations akin to
seL4 for Operating Systems. To this end, we describe early
experiments with a verified sublayered implementation of a
simple bit-stuffing protocol using Coq, and a verified mono-
lithic implementation of a lightweight TCP using Dafny. We
end with a set of challenges for sublayered protocols.

CCS CONCEPTS
• Networks → Network design principles.

KEYWORDS
Sublayering, Modularity, TCP, Network Architecture

ACM Reference Format:
Rathin Singha, Rishabh Iyer, Charles Liu, Caleb Terrill, Todd Mill-
stein, Scott Shenker, George Varghese . 2024. If Layering is useful,
why not Sublayering?. In The 23rd ACM Workshop on Hot Topics
in Networks (HOTNETS ’24), November 18–19, 2024, Irvine, CA,
USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3696348.3696892

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696892

(a) Functional Modularity (b) Sublayering Modularity

Figure 1: Functional (left) vs. sublayered modularity (right).

1 LAYERING AND SUBLAYERING
If anything is worth doing, it is worth doing to
excess – Edwin Land

Layering—where each layer improves upon the services
of the layer below to offer a superior service to the layer
above [7]—is arguably the way all networks are built. Each
layer contains functionality on different nodes that commu-
nicate with one another using packet headers, and this com-
munication is sent through the API provided by the layer
below. TCP, for instance, improves the datagram service of
IP to reliable ordered byte streams using TCP headers with
sequence numbers. In strict layering, each layer only looks at
its header and interface data to do its job. While strict layering
is often violated, it has enabled the engineering of the com-
plex Internet and allowed it to accommodate vast changes in
technology and applications over its 50 year history.

Despite its success, Internet layers have grown in complex-
ity to add new functionality and improve performance, with
each layer now comprising several intertwined distributed
algorithms. For example, traditional transport protocols like
TCP contain distinct components (e.g., connection manage-
ment, reliability, congestion control, flow control) that are en-
tangled through implementation and protocol design choices;
newer transports like QUIC [20] further increase complex-
ity by intertwining security and streams along with reliable
delivery. This increasing complexity is not restricted to the
transport layer, Other layers like the data link layer are also
becoming more intricate, for example with the interposition
of bridging.

Can we—in the same spirit as layering—conquer this com-
plexity by breaking up a complex layer into sublayers? Tam-
ing complexity via sublayering differs from classical func-
tional modularity. Figure 1 depicts a simple protocol like TCP
with sender 𝑆 and receiver 𝑅, that we sublayer into pieces 𝑆𝐴,
𝑆𝐵, 𝑅𝐴, and 𝑅𝐵, where 𝑆𝐴 peers with 𝑅𝐴 (Sublayer 𝐴) and

1

https://doi.org/10.1145/3696348.3696892
https://doi.org/10.1145/3696348.3696892
https://doi.org/10.1145/3696348.3696892


HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Singha et. al

𝑆𝐵 interacts with 𝑅𝐵 (Sublayer 𝐵). If the decomposition of
𝑆 into 𝑆𝐴 and 𝑆𝐵 uses only functional decomposition, then
this decomposition is purely internal to 𝑆 and so is only use-
ful in proving that 𝑆 meets its specification. However, with
sublayering, we have additional structure: 𝑆𝐴 interacts only
with 𝑅𝐴, and 𝑆𝐵 interacts only with 𝑅𝐵, each acting as logical
sub-protocols in a layered architecture. This structure allows
us not only to modularize the reasoning about 𝑆 but also the
reasoning about the interactions between 𝑆 and 𝑅.

Sublayering offers several advantages:
• Fungibility and faster innovation: The mechanisms used

by an individual sublayer can be replaced, while maintain-
ing the API and spec for that sublayer.

• Debugging: Like layering, sublayering has obvious peda-
gogic advantages in teaching, and allows complex layers to
be taught in smaller, more manageable chunks. But it is also
easier to understand and debug changes: we can localize
bugs to sublayers (by examining which sublayer fails its
contract) compared to a monolithic implementation.

• Hardware offload: Sublayering offers an alternative prin-
ciple for hardware offloading —compared to the fast-slow
path or functional modularity based decompositions used
by earlier TCP offload engines like [16, 34].

• Easier verification: Sublayering offers a hierarchy that en-
ables potentially simpler protocol verification compared to
monolithic implementations because it modularizes reason-
ing about the distributed communication, thereby allowing
different aspects to be reasoned about separately.
While we advocate for sublayering, we emphasize that not

everything should be a sublayer, and so, we devise additional
criteria to determine when a piece of functionality should be
encapsulated into its own sublayer [7]. Subayering divides the
functionality in a layer into separate pieces called sublayers
subject to three tests:

T1. Sublayers are ordered such that each sublayer uses
and improves the service of the sublayer below by adding a
distinct function. Each sublayer does so by communicating
with a peer sublayer in at least one other endpoint.

T2. Sublayers communicate with adjacent sublayers via a
narrow interface.

T3. Each sublayer acts on separate packet bits, mechanisms,
and states that are invisible to other sublayers, allowing sub-
layers to be independently replaced and verified.
This immediately begs the question as to how we differentiate
layers and sublayers. We present additional principles to do
so:
Public Interface: Layers maintain clear, well-defined public
interfaces that the rest of the system depends on, while sub-
layers often do not.
Fine-grained services: Layers provide complete services to
the upper layers while sublayers typically operate internally,

providing fine-grained services within a single layer that the
upper layers do not need to be aware of, adding flexibility
and modularity to a layer without complicating the overall
ecosystem.
Names: Layers often have names or identifiers, such as IP
addresses for the IP layer, MAC addresses for Ethernet, or
port numbers for transport protocols. By contrast, sublayers
typically do not have such distinct identifiers but, instead, rely
on the namespace of the layer.

As a simple example of applying these tests, buffer man-
agement in TCP should not be sublayered but be abstracted
using functional modularity since it is a function local to a
node. However, framing in the data link layer, which requires
communication between a sender and receiver data link, while
offering a distinct service (converting physical layer symbols
to and from packets), is a good candidate. One can even break
up sublayers recursively into further sublayers as we show for
framing in Section 4.1.

This paper asks whether sublayering is useful, makes progress
toward answering this question, and outlines the next steps.
Thus the rest of the paper is organized as follows. Section 2
uses our tests to show the Data Link and Network layers
are directly amenable to sublayering, but the transport layer
(particularly TCP) requires some restructuring. Section 3 de-
scribes a proposed sublayering for TCP. Section 4 describes a
vision for a verified Internet using sublayering; it includes ver-
ification experiments with a sublayered bit-stuffing protocol
and a monolithic but lightweight TCP. Section 5 lays down
challenges for verified sublayered implementations. Section 6
compares our approach to related work.

2 SUBLAYERING THE INTERNET
In this section, we first show how the data link (Section 2.1)
and network (Section 2.2) layers are naturally amenable to
sublayering. We then consider the challenge of sublayering
the transport layer in Section 3.

2.1 Sublayering Data Link Layers
The Data Link layer can be divided into four sublayers: fram-
ing, error detection, error recovery, and encoding/decoding.
(shown in Figure 2). Most Data Links from Ethernet to PPP be-
gin by decoding the physical signals (encoded by the sender)
into digital data followed by dividing them into frames so that
headers can be determined as offsets in the frame; this makes
encoding/decoding as the natural candidate for the lowest
sublayer and framing should go on top of it. Error detection
builds on framing by adding some form of checksum to the
end of a frame to make the probability of undetected bit er-
rors very small. In the case of reliable delivery like HDLC [4]
and Fiberchannel [32], reliable delivery adds a header with

2



If Layering is useful, why not Sublayering? HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

sequence numbers to guarantee delivery using retransmis-
sions, but depends on error detection. Alternately, broadcast
links like 802.11 dispense with error recovery and do Me-
dia Access Control (MAC) to guarantee that one sender at a
time, eventually and fairly, gets access to the shared physical
channel.

Figure 2: Data-link Sublayering

These sublayers meet the three tests we outlined earlier. For
example, error detection improves the service of the framing
sublayer by detecting errors with high probability, and has a
simple interface to error recovery (frames with a flag indicat-
ing a bit error on reception). The details of how error detection
is done can be confined to this sublayer, and the sublayer can
be changed (to go from say CRC-32 to CRC-64) without
changing other sublayers if the sublayers communicate only
by their interfaces. The right side of Figure 2 shows how the
header used by each sublayer can theoretically be added (and
stripped on reception) – though actual implementations are
unlikely to do this.

2.2 Sublayering Network Layers
Sublayering the Network Layer (Figure 3), is subtler as there
is a clear separation between the data plane (forwarding)
and control plane (routing). While this distinction is made
explicit in Software Defined Networks [2], it is implicit in IP.
Arrows denote information flow; solid lines denote the data
plane and dashed lines the control plane. The path of a data
packet passes directly from forwarding to the next hop Data
Link. However, the forwarding database is itself built using
routing, which we further sublayer into route computation and
neighbor determination. Neighbor determination is the lowest
sublayer because route computation needs a list of neighbors
that is determined by handshake messages sent directly on
the data link. Next, route computation is below forwarding
because route computation builds the forwarding database.

The sublayers meet the three tests; test T3 is met because
the sublayers use completely different packets (e.g., LSPs

Figure 3: IP Sublayers

Figure 4: Network Sublayers: arrows represent information flow

versus IP packets), not merely different headers in the same
packet. One can change say route computation from distance
vector to Link State without changing forwarding. This separa-
tion is used in most implementations today where forwarding
is offloaded to hardware.

2.3 Sublayering Transports?
Transports like TCP or QUIC have natural subfunctions (e.g.,
connection setup, reliable delivery, congestion control), and
so, at first glance, it seems likely that they should also be
amenable to sublayering. However, this is not the case since
the state maintained by the transport layer (e.g., sequence
numbers, window sizes, etc.) is shared by all of these subfunc-
tions, which leads to non-modular code that is challenging to
reason about. For example, even simple pseudocode examples
of TCP, such as one on page 948 of the book TCP Illustrated
Vol 2 [33] (not shown here), intersperse calls to several differ-
ent functions such as demultiplexing (finding the right PCB
block), connection management (checks for SYN_SENT, etc),
reliable delivery (triggering fast recovery upon receiving du-
plicate acks), and congestion control (updating the window);
all of which share and mutate the same state (encapsulated in
the PCB block). Sharing state provides efficiency (the state is
encapsulated into a memory-efficient layout) and improves
performance (unrestricted access to the shared state avoids
marshaling/unmarshaling overheads). However, it makes rea-
soning challenging, because reasoning about the correctness
of a single function now requires reasoning about its inter-
actions with all other functions via operations on the shared
state.

So, we ask: can we re-architect TCP to make it sublayered
(and thus easier to reason about), while ensuring it continues
to interoperate with existing TCP implementations? We now
outline a proposed sub-layering of TCP based on our three
litmus tests for sublayers.

3



HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Singha et. al

Figure 5: TCP Sublayers: arrows represent information flow

3 TOWARDS A SUBLAYERED TCP
Our proposed TCP sublayers are shown in Figure 5. The
lowest demultiplexing (DM) sublayer is essentially UDP;
it allows demultiplexing via standard destination and source
port numbers. No sublayer can do its work without DM; so we
place DM at the bottom. DM encapsulates details of binding
IP addresses to ports and reusing ports. To pass test T3, DM
only uses the destination and source port numbers as shown
in Figure 6. The header as shown bears no resemblance to the
standard TCP header in order to clearly separate sublayers.
We will argue later that it is isomorphic (and can easily be
translated) to the TCP header.

The next sublayer is connection management (CM) which
encapsulates the classical TCP connection setup using SYN
messages and disconnection using FIN messages. The main
service it provides is to establish a pair of Initial Sequence
Numbers (ISNs). The first standard specifying modern TCP
(RFC793 from 1981) suggested choosing the initial sequence
number to be unique in time using the low-order bits of a clock
“to prevent segments from one incarnation of a connection
from being used while the same sequence numbers may still
be present in the network from an earlier incarnation” [28].
Faced with possible attacks against TCP sequence numbers,
RFC1948 then proposed using a cryptographic hash of ports,
addresses, and a secret key to decide the initial sequence
number. This makes it hard for an attacker to predict the
ISN. Regardless of the mechanism encapsulated, the main
function of CM is to choose ISNs that are unique and hard to
predict. Intuitively, CM sets up RD by providing a range of
sequence numbers not present in the network so that segments
and acks can be trusted as not being delayed duplicates (see
Smith [29], p.145, for a formalization). We place the ISNs
and the SYN/FIN flags in the CM portion of Figure 6.

The next sublayer is reliable delivery (RD), which uses the
ISNs supplied by the lower connection management layer
to reliably (i.e., exactly once) deliver segments given by the
upper layer (OSR). OSR gives RD a segment identified by

Figure 6: Redesigned TCP header

its byte offset, and RD translates this to segment sequence
numbers (by adding the ISN). RD uses retransmissions to
ensure the segment will eventually reach the receiver. All de-
tails of retransmission, including keeping track of a window
of outstanding packets are encapsulated in RD; if Selective
Acknowledgement is used, the SACK options are also pro-
cessed by this sublayer though they are omitted in Figure 6 for
simplicity, which only shows the normal sequence numbers
in the RD header in addition to the ISNs in the CM header.

Finally, the uppermost sublayer provides Ordering, Seg-
menting, and Rate Control (OSR). OSR takes the byte stream
and breaks it up into segments based on parameters like max-
imum segment size. At the receive end, segments may be
delivered out of order by the RD sublayer. OSR must paste
segments back in order (as in a standard TCP); the details of
this reordering are hidden in OSR. OSR guarantees the main
property of TCP—that the byte stream received is the same as
the sent byte stream—using the properties that RD provides.

Finally, rate control is hidden within OSR which interfaces
with the RD sublayer below by deciding when a segment is
“ready” to be transmitted. Intuitively, the property it guaran-
tees is if the network or receiver bottleneck rate changes and
stays steady, the sending OSR will eventually reach and stay
at that bottleneck rate. More elaborate performance properties
can also be used [1]. Rate Control could potentially be sepa-
rated from Ordering and Segmenting but this would require
Ordering to pass a queue of segments to Rate Control (in
addition to the byte queue at the client interface).

To implement congestion control in OSR, all congestion
control signals should be available to OSR via either the
OSR header or by the interface to RD (test T3). Thus ex-
plicit congestion control notifications like ECN are in the
OSR subheader (Figure 6), as is the receiver window for flow
control. Other congestion signals such as timeouts and loss
information should be summarized and passed by RD to OSR
as in [26]. Finally, the sending RD must tell the sending OSR
when segments are acked so the sending OSR can advance
the congestion and flow control windows.

In an alternative sublayering, congestion/Rate control can
be thought of as providing a service [26] to reliable delivery
(the window size), and hence arguably would be ordered
below RD and above CM. But then the ISNs have to pass

4



If Layering is useful, why not Sublayering? HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

through rate control. Instead, we found it cleaner to think
of Rate Control as giving RD a segment when it is “ready”
in order to meet a rate/flow control objective, placing rate
control above RD.

We make the following case that this sublayering meets the
three tests outlined earlier. T1: The sublayers are ordered and
can be thought of as communicating with peer sublayers at the
receiver. DM adds demultiplexing, connection management
creates ISNs, RD does reliable delivery, and OSR converts
the byte stream to and from segments, and adjusts the sending
rate to network bottlenecks (congestion control) and receiver
buffers (flow control). T2: OSR communicates with RD by
deciding when to release a segment, RD communicates with
CM by obtaining an ISN, and CM communicates with DM by
specifying the 5-tuple for the connection. T3: This can be seen
by inspecting Figure 6. If each sublayer adheres to its API,
one could in principle seamlessly replace congestion control
(by say a rate-based protocol) or connection management (by
a timer-based scheme [31]).

3.1 Potential Objections
We address four possible objections:

Sublayering replicates functionality: Besides RD, CM
does reliable delivery – but only for SYN and FIN. But this is
implicit in TCP which uses a bootstrap reliability mechanism
(retransmission and timeout of SYNs and FINs, no windows)
to set up more sophisticated mechanisms in RD (windows,
SACK, etc). Next, both RD and OSR need a “window”; for
RD a window is the range of outstanding segments; for OSR it
reflects a way to control the sending rate. These two concepts
are conflated in TCP; it is reasonable to separate them. Simi-
larly, both RD and OSR need mechanisms to advance their
window when segments come out of order and a receiving
segment fills a hole. This duplication of processing can be
reduced if RD passes hints to OSR.

Sublayering does not help hardware offload: On the
contrary, Figure 5 offers a principled way to offload parts
of TCP processing to hardware. For example, OSR, which
appears complex and likely to evolve, is best relegated to
software. A simple decomposition places RD, CM, and DM
in hardware; with more finagling and a modest duplication of
state, only RD can be placed in hardware.

Sublayered TCPs cannot interoperate with standard
TCPs: The header in Figure 6 clearly differs from the stan-
dard (RFC 793), making it impossible for a sublayered TCP –
as stated so far – to interoperate with a standard TCP. How-
ever, we claim that the two headers are isomorphic. Our intent
is that all information in the standard TCP header appear in
Figure 6 and vice versa. While the ISN header is redundant,
it is static after the initial handshake. Thus adding a shim
sublayer that converts the sublayered header in Figure 6 to

a standard TCP header, together with replicating all existing
TCP functionality in some sublayer, should allow interoper-
ability.

Sublayered TCP performance will be poor: Most per-
formance issues in networking are due to protection, control
overhead, and copying. We have already learned to finesse
those for layer crossings, so why not for sublayer crossings?
We return to this in the final section on challenges (Section 5).

We believe the potential disadvantages of a sublayered
TCP are outweighed by potential advantages in faster inno-
vation and debugging, cleaner hardware offload, and easier
verifiability.

4 SUBLAYERING AND VERIFICATION
We now discuss whether sublayering can help construct veri-
fied implementations of Internet protocols. In the last 15 years,
verified implementations of complex system software have
come of age. For instance, seL4 [18] is a verified OS Kernel
used in embedded systems with performance comparable to
existing kernels; CompCert [23] is a verified compiler used
in mission-critical software; Ironclad/Ironfleet [14] verifies
practical distributed protocols; and NetCore [13] describes a
machine-verified network controller for SDNs.

In contrast, while some initial efforts have been launched
to build verified Internet protocol implementations of say
TCP [3], QUIC [6] and IP routing [8], none seems either
reasonably complete or had much uptake. Further, bugs in
such software continue to this day [24, 37].

We describe two preliminary experiments to investigate
whether sublayering can help verify Internet implementations.
Section 4.1 describes our experience building a verified sub-
layered implementation of a simple but widely used protocol,
bit stuffing, using Coq [15]. By contrast, Section 4.2 describes
the difficulties of even verifying a straightforward property
(in-order delivery) of a monolithic but simple implementation
of TCP (lwIP TCP) using Dafny [22].

4.1 Verified Bit Stuffing
A commonly used framing mechanism within the Data Link is
HDLC [4], which uses the bit pattern 01111110, called a flag,
to delimit the start and end of a frame. To prevent unwanted
flags in the data, HDLC uses a “stuffing" rule: whenever it
sees 11111 in the data it adds (stuffs) a 0. After removing flags,
the receiver “unstuffs” by removing a 0 after it sees 11111.
Bit-stuffing appears simple, but subtleties make certain bit-
stuffing rules fail. Some rules can have the stuffed bit form a
flag with subsequent data bits; some flags can cause a false
flag to occur using the data and a prefix of the end flag.

Sublayered Implementation: The standard implementa-
tion has the sender, in a single pass, emit a start flag, stuff the
data on the fly, and finally emit an end flag. In a single pass,

5



HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Singha et. al

the receiver looks for the start flag and unstuffs the data that
follows on the fly, while also looking for an end flag which
it strips. Instead, we suggest the following sublayering: the
upper sublayer is a stuffing sublayer that does stuffing (at the
sender) and unstuffing (at the receiver). The lower sublayer
adds flags (at the sender) and removes flags (at the receiver).
This is a nested sublayering within framing, which is itself a
sublayer of the Data Link.

The sublayering meets our three tests– T1: the stuffing
layer adds and removes the stuff bit, while the flag sublayer
frames the data using flags; T2: the stuffing sublayer passes a
frame without flags to and from the flag sublayer; T3: This
holds as long as the flag is passed in the interface; a change in
the interface (i.e., flag) would require a change in the stuffing
rule. Thus, the correctness of stuffing depends on the flag: this
shows up in the lemmas we proved,

Verified Implementation: We created a Coq implementa-
tion with functions for stuffing, adding flags, removing flags
and unstuffing. The main specification is Unstuff (Remove-
Flags (AddFlags (Stuff(D)))) = 𝐷 for all data 𝐷. Our proof
had 57 lemmas and 1800 lines of code. We also created a li-
brary of stuffing protocols that our proof deems valid; it found
66 alternate stuffing rules, some of which had less overhead
than HDLC. Finally, we generated verified OCaml code from
our Coq implementation.

Lessons learned:
1. Sublayering Modularity: The proof uses separate inde-

pendent correctness lemmas for each sublayer which allows
us to modularly reason about the distributed protocol.

2. Better stuffing rules: The flag 00000010 and the stuffing
rule that stuffs a 1 after seeing the string 0000001 has an
overhead (using a random model) of 1 in 128 compared to 1
in 32 for the HDLC rule. Verification can provide principled
replacements for ad hoc constants that litter protocols.

4.2 Verifying a Simple TCP
We report our experience verifying a monolithic implemen-
tation of TCP which suggests the complexity of the task,
despite two simplifications: we used a simple TCP implemen-
tation, the lwIP TCP stack [9]; we also only verified a simple
in-order, reliable delivery property assuming the network is
initially empty as an abstraction of CM’s guarantee.

Dafny implementation: Our Dafny implementation fol-
lows the lwIP code which in turn is based on the BSD TCP
code [33]. We wrote 30 lemmas and ≈ 3500 lines of code.

Lessons learned:
1. Partitioning large functions: Dafny times out for large

functions like tcp_input. While tcp_input() breaks up into
tcp_process() and tcp_receive(), tcp_receive() was also too
large, and had to be broken up into smaller functions in ad hoc
fashion. We did so based on cases such as: the window being

updated on receiving an ack, a duplicate ack arriving, etc. In
each case, we had to add many complex annotations to ensure
that the postconditions of these ad hoc smaller functions were
consistent with each other and tcp_receive().

2. Ownership: Verification of monolithic stacks with un-
restricted shared state (e.g., the PCB) is challenging because
Dafny does not have an in-built notion of ownership [21].
Modifying the heap requires a plethora of annotations to man-
ually specify the precise portions of the heap that an individual
function accesses, to prove that functions do not interfere with
one another via side effects in shared state.

3. Entangled State: For example, the window is crucial
for ensuring reliable delivery, but reasoning is complicated
because congestion/flow control can also alter the window.

Some issues are particular to Dafny and our proof strategy.
Nevertheless, we conjecture that sublayering can mitigate
them. Sublayering breaks up layer modules in principled, not
ad hoc ways, and the state is segregated within sublayers.
Further, once a sublayer is proved, we can forget the details
of a sublayer, relying thereafter only on the postconditions
of the lower layer. By contrast, many functions in our Dafny
proof (that correspond to sublayers) require guarantees from
the network; while this is a small cost, it suggests why 𝑂 (𝑁 2)
interactions may arise. Minimally, a sublayering exercise can
suggest better proof strategies for monolithic code.

5 CHALLENGES FOR SUBLAYERING
We propose the following challenges for sublayered protocols
that form a research agenda.

1. Refactor: Refactor monolithic implementations to be
sublayered with APIs and a possibly re-architected header
and test for basic functionality (e.g., reliable delivery for TCP)
with a sublayered implementation at all nodes.

2. Interoperate: Show that the refactored implementation
can interoperate with a standard (monolithic) implementation,
possibly adding a shim layer to translate from the sublayered
header to the standard header.

3. Tune: Use standard tricks to make the sublayered imple-
mentation perform close to the best monolithic one.

4. Verify: Verify, at least partially, the correctness of the im-
plementation using Proof Assistants like Dafny or Coq, both
with and without sublayering, to ascertain whether verifying
a sublayered implementation is easier.

5. Replace: Replace some sublayers with alternatives and
investigate the difficulty of doing so.

6. Hardware assist: Move some sublayers to hardware in
an FPGA implementation to show that hardware assist can be
done in a principled fashion.

While we plan to do so for TCP, the same research agenda
holds for all protocols. Most protocol implementations today
are not sublayered, including Data Links and network layers

6



If Layering is useful, why not Sublayering? HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

despite the fact that their sublayers are natural and do not
require extensive restructuring like TCP. Of particular interest
to us is QUIC which has a clean sub-layering between net-
working (the transport layer) and security (the record layer).
The transport layer can likely be further sublayered into a
stream layer and a connection layer.

6 RELATED WORK
The closest work to ours is that of Ford et. al [11], who
advocate breaking up the transport layer into three distinct
layers—demultiplexing, congestion control, and reliable data
delivery—to allow for flexibility and easier adoption of new
protocol functionality. There are two key differences in our
work: First, we focus on an existing protocol (specifically
TCP), with the goal of breaking up its complexity for ease of
verification. This focus allows us to define layers at a finer
granularity, unlike Ford et. al whose focus on generality leads
to a design that represents the lowest common denominator
across different transport protocols. Second, we advocate for
sublayers as opposed to layers. Doing so ensures that we do
not modify the format of packet headers, which is critical for
deployability in the public Internet [27].

Other related work includes SST [10] and Minion [27],
who propose separating out ordered delivery from TCP and
moving it into a separate layer. By doing so, SST and Minion
allow applications to define their own policies for ordering,
and potentially avoid the head-of-line (HOL) blocking inher-
ent to traditional TCP. We see this work as a specific use case
for sublayering, i.e., they seek to answer the question: “How
do I sublayer TCP to avoid HOL blocking?” In contrast, our
approach to sublayering TCP is more general, and subsumes
this goal along with others (such as defining sublayers for
hardware offload and verification).

Prior research on hardware offloading has primarily ex-
ploited functional modularity (as opposed to sublayers). For
example, AccelTCP [25] proposes offloading connection man-
agement to NICs while the host handles reliable delivery. Sim-
ilarly, TAS [17] proposes hardware offload for the fast path
by bypassing the OS kernel for RPCs and a slow path for
connection management and congestion control. Similar to
us, all such work seeks to decompose TCP, but they do not use
sublayers as we do to limit the interaction between different
components.

Day’s Recursive Internet Network Architecture (RINA) [12]
has a superficial resonance with sublayering: both use recur-
sion but in different ways. The primary goal of RINA is to
expose similarity at all layers and reuse mechanisms at each
layer. RINA does not, for instance, advocate sublayering TCP
and Data Links as we do. Zave and Rexford’s Real Network
Architecture [36] finds new abstract models to fit Internet real-
ities such as underlays and overlays. Kohler’s Prolac TCP [19]

uses standard functional modularity to make it more readable
and modular. Narayan et al. [26] separate out TCP conges-
tion control into a separate control plane with a well-defined
interface in the same spirit as sublayering.

Existing work in verifying transport protocols [3, 5, 6,
8, 30, 35] automatically verifies message-oriented and not
bytestream-oriented transports. Smith [29] verifies a model
of CM and RD together (without sublayering) using manual
verification in a proof of over 100 pages.

7 CONCLUSIONS
In a world of Internet protocols where complexity reigns due
to the constant drumbeat of performance and functionality,
how can the Internet’s essential simplicity be restored? In this
paper, we suggest sublayering as one way forward.

Sublayering has variants that differ from classical layering,
yet meet the three tests. For example, control sublayers in
the network layer (Figure 3) provide information for the data
plane that bypasses them. Our sublayered TCP (Figure 5) has
CM initially active and then silent.

This paper also proposes a second vision for building
verified Internet protocol implementations. The NetCore pa-
per [13] advocates using SDNs because “they relocate control
from distributed algorithms running on individual devices to
a single program running on the controller”. We hope sublay-
ering can remove some of the complexity of reasoning about
distributed protocols.

REFERENCES
[1] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad

Alizadeh, and Hari Balakrishnan. 2021. Toward formally verifying con-
gestion control behavior. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (SIGCOMM ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1–16.

[2] Martín Casado, Nick McKeown, and Scott Shenker. 2019. From ethane
to SDN and beyond. SIGCOMM Comput. Commun. Rev. 49, 5 (nov
2019), 92–95.

[3] Guillaume Cluzel, Kyriakos Georgiou, Yannick Moy, and Clément
Zeller. 2021. Layered Formal Verification of a TCP Stack. In IEEE
Secure Development Conference, SecDev 2021, Atlanta, GA, USA,
October 18-20, 2021.

[4] GL communications. 2024. HDLC Protocol Overview. https://www.gl.
com/Presentations/HDLC-Protocol-Overview-Presentation.pdf.

[5] Andre Danthine and Joseph Bremer. 1978. Modelling and verification
of end-to-end transport protocols. Computer Networks (1976) 2, 4-5
(1978), 381–395.

[6] Antoine Delignat-Lavaud, Cédric Fournet, Bryan Parno, Jonathan
Protzenko, Tahina Ramananandro, Jay Bosamiya, Joseph Lallemand,
Itsaka Rakotonirina, and Yi Zhou. 2021. A Security Model and Fully
Verified Implementation for the IETF QUIC Record Layer. In 42nd
IEEE Symposium on Security and Privacy, SP 2021, San Francisco,
CA, USA, 24-27 May 2021.

[7] Edsger W. Dijkstra. 1968. The structure of the “THE”-
multiprogramming system. Commun. ACM 11, 5 (may 1968), 341–346.
https://doi.org/10.1145/363095.363143

7

https://www.gl.com/Presentations/HDLC-Protocol-Overview-Presentation.pdf
https://www.gl.com/Presentations/HDLC-Protocol-Overview-Presentation.pdf
https://doi.org/10.1145/363095.363143


HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Singha et. al

[8] Mihai Dobrescu and Katerina Argyraki. 2015. Software dataplane
verification. Commun. ACM 58, 11 (2015), 113–121.

[9] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP
Stack. Swedish Institute of Computer Science 2, 77 (2001).

[10] Bryan Ford. 2007. Structured streams: a new transport abstraction.
In Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications. Kyoto,
Japan, 361–372.

[11] Bryan Ford and Janardhan R Iyengar. 2008. Breaking Up the Transport
Logjam.. In HotNets. 85–90.

[12] Eduard Grasa, Eleni Trouva, Patrick Phelan, Miguel Ponce de Leon,
John Day, Ibrahim Matta, Lubomir T Chitkushev, and Steve Bunch.
2011. Design principles of the recursive internetwork architecture
(RINA).

[13] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-verified
network controllers. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
Association for Computing Machinery, New York, NY, USA, 483–494.

[14] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan
Parno, Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet:
proving practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles. 1–17.

[15] INRIA. 2024. The Coq Proof Assistant. https://coq.inria.fr/.
[16] Hankook Jang, Sang-Hwa Chung, Dong Kyue Kim, and Yun-Sung Lee.

2011. An Efficient Architecture for a TCP Offload Engine Based on
Hardware/Software Co-design. J. Inf. Sci. Eng. 27, 2 (2011), 493–509.

[17] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP ac-
celeration as an OS service. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–16.

[18] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal verification
of an OS kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles. 207–220.

[19] Eddie Kohler, M Frans Kaashoek, and David R Montgomery. 1999. A
readable TCP in the Prolac protocol language. In Proceedings of the
conference on Applications, technologies, architectures, and protocols
for computer communication. 3–13.

[20] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente,
Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett,
Janardhan Iyengar, et al. 2017. The quic transport protocol: Design
and internet-scale deployment. In Proceedings of the conference of the
ACM special interest group on data communication. 183–196.

[21] The Rust Programming Language. 2024. Understanding Owner-
ship. https://doc.rust-lang.org/book/ch04-00-understanding-ownership.
html.

[22] Rustan Leino and et al. 2024. The Dafny Programming and Verification
Language. https://dafny.org/.

[23] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer,
Markus Pister, and Christian Ferdinand. 2016. CompCert-a formally
verified optimizing compiler. In ERTS 2016: Embedded Real Time
Software and Systems, 8th European Congress.

[24] Jonathan Looney. 2019. CVE-2019-11478: TCP retransmission queue
implementation in the Linux kernel can be fragmented when handling
certain TCP Selective Acknowledgment (SACK) sequences. https:
//nvd.nist.gov/vuln/detail/CVE-2019-11478.

[25] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and
KyoungSoo Park. 2020. {AccelTCP}: Accelerating network applica-
tions with stateful {TCP} offloading. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). 77–92.

[26] Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. 2018. Restructuring endpoint congestion control. In
Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’18). Association for
Computing Machinery, New York, NY, USA, 30–43.

[27] Michael F Nowlan, Nabin Tiwari, Janardhan Iyengar, Syed Obaid
Amin, and Bryan Ford. 2012. Fitting Square Pegs Through Round
Pipes: Unordered Delivery {Wire-Compatible} with {TCP} and
{TLS}. In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12). 383–398.

[28] J Postel. 1981. RFC 793. https://www.ietf.org/rfc/rfc793.txt.
[29] Mark Anthony Shawn Smith. 1997.

Formal verification of TCP and T/TCP. Ph. D. Dissertation. Mas-
sachusetts Institute of Technology.

[30] Carl A Sunshine and Yogen K Datal. 1978. Connection management in
transport protocols. Computer Networks (1976) 2, 6 (1978), 454–473.

[31] Richard W Watson. 1981. Timer-based mechanisms in reliable transport
protocol connection management. Computer Networks (1976) 5, 1
(1981), 47–56.

[32] Tom Weimer. 2003. Fibre channel fundamentals. Feb 25 (2003), 2.
[33] Gary R Wright and W Richard Stevens. 1995. TCP/IP illustrated,

volume 2: The implementation. Addison-Wesley Professional.
[34] Zhong-Zhen Wu and Han-Chiang Chen. 2006. Design and im-

plementation of tcp/ip offload engine system over gigabit ether-
net. In Proceedings of 15th International Conference on Computer
Communications and Networks. IEEE, 245–250.

[35] Arseniy Zaostrovnykh, Solal Pirelli, Rishabh R. Iyer, Matteo Rizzo,
Luis Pedrosa, Katerina J. Argyraki, and George Candea. 2019. Ver-
ifying Software Network Functions With No Verification Exper-
tise. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October
27-30, 2019.

[36] Pamela Zave and Jennifer Rexford. 2024. The Real Internet
Architecture: Past, Present, and Future Evolution. Princeton University
Press.

[37] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin,
and Shi-Min Hu. 2021. TCP-Fuzz: Detecting Memory and Semantic
Bugs in TCP Stacks with Fuzzing. In 2021 USENIX Annual Technical
Conference, USENIX ATC 2021, July 14-16, 2021.

8

https://coq.inria.fr/
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://nvd.nist.gov/vuln/detail/CVE-2019-11478
https://nvd.nist.gov/vuln/detail/CVE-2019-11478
https://www.ietf.org/rfc/rfc793.txt

	Abstract
	1 Layering and Sublayering
	2 Sublayering the Internet
	2.1 Sublayering Data Link Layers
	2.2 Sublayering Network Layers
	2.3 Sublayering Transports?

	3 Towards a sublayered TCP
	3.1 Potential Objections

	4 Sublayering and Verification
	4.1 Verified Bit Stuffing
	4.2 Verifying a Simple TCP

	5 Challenges for Sublayering
	6 Related Work
	7 Conclusions
	References

