Research Statement
Rishabh Tyer

I am a computer systems researcher, and my work lies at the intersection of systems, networking, computer
architecture, and formal verification. My research focuses on developing techniques that enable engineers to
reason about the expected performance of their systems before they are deployed in production. My dissertation
introduced the notion of performance interfaces: simple, succinct programs that enable engineers to reason
precisely about a system’s expected performance behavior just like semantic interfaces (e.g., code documentation,
header files, and specifications) enable reasoning about system functionality.

The best way to understand performance interfaces, the problems they solve, and their potential impact,
is by analogy to semantic interfaces. Semantic interfaces provide simple, succinct descriptions of a system’s
functionality, enabling engineers to reason about the system’s semantic behavior without having to delve into
its implementation. The introduction of semantic interfaces revolutionized systems development; engineers
today routinely use third-party code, and infrastructure operators frequently deploy systems they did not build
themselves, none of which would be feasible without semantic interfaces.

In contrast, there exist no equivalent interfaces that enable precise reasoning about performance, despite
performance increasingly being a first-class citizen in system design. Widely used representations, such as
performance envelopes and benchmarks, provide incomplete visibility, leading to frequent hiccups and meltdowns
in production. Such events are costly; for instance, delays on the order of milliseconds can lead to millions of
dollars in lost revenue [24,26], and the stakes are higher for emerging systems such as self-driving cars where
delays can result in the loss of human life [2,16].

Approach. We aim to realize our vision of performance interfaces via two complementary thrusts.

e Thrust 1. First, we design techniques and tools that enable summarizing the performance of systems
software and hardware in succinct yet precise interfaces (§1). Our key insight here is to decouple performance
behavior from functionality, and we show that doing so enables the design of interfaces that capture all
performance-relevant details of a system while being orders of magnitude simpler than the implementation. To
make these interfaces immediately useful, we develop tools that extract such performance interfaces from the
corresponding implementation for a wide range of systems software and hardware, ranging from packet pro-
cessing applications [10,13], to low-level systems code such as OS system calls and cryptographic libraries [11],
and finally specialized hardware accelerators for deep learning and system infrastructure tasks [12,18].

e Thrust 2. Second, we redesign systems such that their resulting performance behavior is predictable,
and thus amenable to summarization and abstraction into performance interfaces (§2). A common theme
here is the integration of techniques that span different domains (e.g., operating systems, formal methods,
networking, and compilers) to unlock new possibilities to abstract and simplify the system in question.

Impact. The tools we developed as part of the first research thrust are being used by several academic groups [3,
17] and have attracted interest from practitioners at Meta, Alibaba, and Google. Furthermore, some of the
systems we built as part of the second thrust have already been deployed in production. For example, our proposed
load balancer has been deployed in production at Alibaba since 2021, and our work on OS kernel extensions
has been upstreamed into the Linux kernel mainline [1,4,5] and is currently in the late prototype stage at Meta.

1 Performance Interfaces for Systems Software and Hardware

Performance interfaces for network functions [10,13]. We first concretized the notion of performance
interfaces in the context of network functions (NFs), i.e., in-network packet-processing applications such as
load balancers and firewalls. NFs are typically on the critical path of serving user requests and often face
unpredictable user traffic, making their performance a key concern for operators [19].

Our work answers the question: What should a human-readable performance interface look like? The key
challenge here is designing a representation that is both simple and accurate. These goals are conflicting because
accuracy typically requires adding detail, which hurts simplicity.

We proposed that a performance interface for a program P be another program Ip that takes the same
inputs as P and returns P’s processing latency. Ip returns P’s latency not as concrete numbers but as formulae
expressed in terms of P’s inputs, the state that P maintains, the configuration parameters it reads at startup,
and the hardware it runs on. Ip also includes a resolution r that represents the smallest difference in latency
that Ip can specify: if L(P(I)) is P’s latency given input I, then [Ip(I)—L(P(I))|<r, VI.

We chose to represent the performance interface as a program because programs are easy for engineers
to understand, and are executable, which enables empirical reasoning about factors that are hard to reason

Page 1 of 5



Research Statement Rishabh Iyer rishabh.iyer@berkeley.edu

about analytically (e.g., microarchitectural details of different hardware platforms). Additionally, expressing
performance as symbolic formulae enables the interface to succinctly capture P’s performance behavior across
different inputs and deployment environments. Finally, the resolution provides readers of the interface with the
flexibility to choose between multiple levels of abstraction (i.e., trading off accuracy for improved readability) based
on the performance variability they are willing to tolerate in their deployment scenarios. A performance interface
at a specified resolution only differentiates between inputs whose performance differs by more than the resolution,
and so implementation details that cause performance variability irrelevant to the reader are abstracted away.

We designed and implemented PIX: a tool that takes as input NF code written in C and outputs performance
interfaces in the form of Python programs. Under the covers, PIX uses a combination of static analysis, symbolic
execution, and binary instrumentation to automatically analyze the NF code. PIX-generated performance
interfaces are accurate yet orders of magnitude simpler than the code, and can be used to identify performance
regressions, diagnose and fix performance bugs, and evaluate the latency impact of NIC offloads. Since
publication, PIX has been used by researchers at several universities, including Imperial College London [17],
Politecnico di Milano [3], and Carnegie Mellon University.

Abstractions for reasoning about the CPU cache usage of systems code [11]. Since semantic interfaces
describe not only a program’s expected output(s) but also any related side effects (i.e., modifications to shared
state), performance interfaces must also describe performance side effects. Performance side effects arise because
programs running on the same hardware (e.g., caller and callee, application and OS) share microarchitectural
resources (e.g., caches), which can lead to unpredictable performance behavior [23,29].

We focus on a dominant source of performance side effects, namely the CPU cache. Our goal is to help
engineers answer questions such as: “How does the code’s cache usage vary as a function of the workload?” To
answer such questions, engineers require visibility into how the code processes an abstract workload. However,
existing tools, such as profilers and cycle-accurate simulators, only provide visibility into concrete workloads.

We designed and implemented CFAR—a tool that automatically processes systems code into answers to
questions about how that code uses the cache. CFAR’s processing works in two phases: First, CFAR extracts
from the input code an abstract representation (a “ memory distillate”) of how the code accesses memory.
Then, CFAR uses simple programs (“projectors”) to transform the distillate into answers to specific questions
about the code’s cache usage. The distillate serves as a precise abstraction of the code’s memory usage (i.e.,
it contains all the information relevant to how the code accesses memory), enabling developers to use projectors
to answer diverse questions about cache behavior.

We demonstrated that CFAR enables engineers to not only identify performance bugs and security vulnerabili-
ties in their code but also understand the performance impact of incorporating third-party code into their systems
without extensive benchmarking. Since publication, CFAR has appeared at the Linux Plumbers Conference
(the top venue for Linux practitioners) and has attracted interest from practitioners at Meta and Alibaba.

Performance interfaces for hardware accelerators [12,18]. As a postdoc, I helped extend the notion of
performance interfaces to hardware accelerators. While system designers are increasingly reliant on accelerators
for performance improvements, building systems that use accelerators remains challenging because accelerators
typically come with little actionable information about their expected performance.

To bring performance interfaces to accelerators, we proposed a new abstraction for representing hardware
performance, which we call a Latency Petri Net (LPN). We needed a new abstraction since hardware’s execution
model is inherently parallel and asynchronous, which leads to complex performance dependencies such as queuing
and backpressure. Petri Nets [21] provided a good starting point for our abstraction since they were designed
to model concurrent systems, and so are suited to precisely capture hardware’s parallel execution model.

We developed a toolchain (LTC) that automatically transforms the LPN into human-readable performance
interfaces that engineers can use to make informed design decisions. LTC can also transform the LPN into
other representations, such as a fast performance simulator that enables compilers to quickly yet accurately
optimize code for the accelerator, as well as a verification condition that engineers can pass to an SMT solver
to verify key performance properties of their system before deployment.

Since publication, the LPN abstraction has been integrated into Simbricks [22], a performance simulator
developed by an eponymous startup that enables end-to-end simulation of accelerated systems. LPNs have
also attracted initial interest from Google’s platforms team to speed up the simulation of candidate designs
for new accelerators on their ARM-based SoCs.

2 Designing Systems with Predictable Performance

While the previous thrust focused on abstracting a given system implementation, this thrust focuses on
redesigning systems to ensure predictable performance behavior. To do so, we integrate techniques from various

Page 2 of 5


mailto:rishabh.iyer@berkeley.edu

Research Statement Rishabh Iyer rishabh.iyer@berkeley.edu

domains (e.g., operating systems, formal methods, compilers, and networking) to simplify the system and
enhance performance predictability.

Fast, flexible, and practical kernel extensions [7]. OS kernel extensions enable applications to customize
the OS to meet specific performance and functionality requirements. For instance, engineers can streamline
the general-purpose kernel I/O stack or tweak OS scheduling policies to ensure predictable performance.
Unfortunately, existing solutions constrain users either in the extent of the functionality that they can express
or the performance overheads incurred by their extensions.

As a postdoc, I helped design KFlex, a new approach to kernel extensibility that strikes an improved balance
between the expressivity and performance of kernel extensions. To do so, KFlex separates the management
of kernel-owned resources (e.g., kernel memory) from extension-specific resources (e.g., extension memory).
This separation allows KFlex to use distinct mechanisms to manage each class of resources—automated
verification for the safety-critical kernel-owned resources and lightweight runtime checks for extension-owned
resources—which enables users to customize the OS in ways that are infeasible today and provides significant
end-to-end performance benefits for applications.

Several of KFlex’s mechanisms have already been integrated into the Linux kernel, with efforts ongoing for
the rest. KFlex was also awarded an inaugural eBPF Research Award by the Linux Foundation and is in the late
prototype stage at Meta, who are using its improved flexibility to deploy complex scheduling policies fleetwide.

Efficient microsecond-scale scheduling [14]. In addition to enabling engineers to express diverse OS policies
with KFlex, our work also addresses OS mechanisms. Specifically, we focus on improving the efficiency of the OS
scheduler’s mechanism for swapping out the currently running thread. The efficiency of this mechanism is crucial
for latency-sensitive services like web search, where short requests should not be blocked by long-running ones.

We built Concord, an OS scheduler that can switch between threads 4x more efficiently than the state
of the art. Concord separates two scheduling concerns, namely when to preempt a thread and how the thread
should give up the CPU. In Concord, the OS scheduler is responsible for the former, as it has visibility into all
requests in the system, while the threads are responsible for the latter and cooperatively yield the CPU to enable
faster switching. Concord uses automated compiler instrumentation to facilitate transparent communication
between the scheduler and threads over dedicated cache lines. Since dedicated shared cache lines are the fastest
way for two threads to communicate on shared-memory hardware, Concord’s software switching mechanism
outperforms even Intel’s latest hardware support for scheduling [27].

Eliminating load balancer bottlenecks for cloud services [15]. Load balancers are essential in cloud services,
but can often become a bottleneck and lead to latency spikes as they are on the critical path of every packet.

I helped design CRAB, a technique that eliminates these bottlenecks by observing that load-balancing
decisions are made only once per connection during setup. After the initial SYN packet, the load balancer can
be removed from the critical path, preventing latency spikes for all subsequent packets.

We realized CRAB by introducing a new TCP option to bypass the load balancer and implementing the
option using OS kernel extensions. CRAB’s design is pragmatic and takes advantage of the fact that cloud
providers control both the physical infrastructure and the OS images used by tenants in their datacenters. This
pragmatic design has ensured that CRAB’s techniques have been deployed as part of Alibaba’s Next-Generation
Load Balancer since 2021.

3 Future Research

The computing landscape is becoming increasingly heterogeneous with the widespread use of accelerators,
new memory technologies, and diverse networking fabrics, each optimized for a specific class of applications.
In parallel, we are witnessing the rise of incredibly compute- and cost-intensive workloads, such as large-scale
Al training and inference. Together, these trends make it imperative that the abstractions and interfaces used
to build the systems of tomorrow treat performance as a first-class citizen. Failing to do so will result in the
software underutilizing the capabilities of heterogeneous hardware and lead to prohibitive costs.

My work on performance interfaces makes me optimistic that we can build such systems to be efficient and
cost-effective, just like semantic interfaces enabled building systems that were more complex yet safer than
any that came before. I plan to leverage my experience in building systems with well-understood performance
to tackle this challenge and expand my work into other areas of computer systems. Some specific directions
I am interested in include:

Performance interfaces for large-scale distributed systems. I am particularly keen to expand my
vision of performance interfaces to large-scale distributed Al training and inference. Given the current price
and scarcity of GPUs, as well as the fact that bottlenecks in such systems can shift with each generation of

Page 3 of 5


mailto:rishabh.iyer@berkeley.edu

Research Statement Rishabh Iyer rishabh.iyer@berkeley.edu

GPUs [25,31], we have been repeatedly approached by practitioners to develop techniques that estimate the
end-to-end performance gains offered by newer GPU models without requiring large-scale purchases.

I am also keen to expand my work to large-scale distributed applications. Such applications are increasingly
broken down into thousands of component microservices, which, while enabling faster innovation and better
fault tolerance, are harder to reason about due to complex interactions between individual components. I
believe that an LPN-like performance abstraction that accurately captures interactions between microservices
could enable precise reasoning about end-to-end performance for such applications.

Hardware-software co-design for predictable performance. In this work, I seek to realize performance
predictability from the ground up by redesigning the interface between hardware and software (i.e., the ISA). The
ISA is a semantic interface, and has largely remained static even as the underlying microarchitecture—which
determines performance—has evolved dramatically (e.g., with the introduction of out-of-order execution, multiple
layers of caching, etc). This raises the question: Can we augment the ISA to enable predictable performance?
For example, exposing events in the memory hierarchy could allow software to control object placement and
eviction, and exposing scheduling priorities in memory controllers could enable software to leverage policies like
those used in network switches to mitigate the increased memory latency caused by CXL and tiered memory.

Programming framework for safe cyber-physical systems. I am also keen to expand my work to
emerging cyber-physical systems (CPS), such as self-driving cars and surgical robots, where meeting performance
requirements is necessary for functional correctness. Despite significant research on the topic, developing correct
CPS software remains challenging, even for experts [16]. My goal is to answer questions such as: Can we
build a programming framework that enables correct-by-construction CPS software by leveraging programming
language techniques such as resource-aware types [9]7 I believe this domain is amenable to disruption with
new programming frameworks much like how programming frameworks such as MapReduce [6] and Spark [28]
revolutionized cluster computing.

Energy-efficient datacenter systems. Beyond performance interfaces, I am also keen on redesigning data-
center systems to improve energy efficiency and reduce carbon emissions. Datacenters are estimated to consume
1-3% of the world’s electricity today, and this figure is only expected to increase with the emergence of large-scale
AT [8]. I believe that addressing this challenge requires designing new system abstractions that treat energy
and carbon emissions as first-class citizens, enabling engineers and tools such as datacenter schedulers to make
informed design and deployment decisions. I aim to leverage my experience in making performance a first-class
citizen in systems design to do the same for energy efficiency.

Systems abstractions for emerging hardware technologies. Finally, in the longer term, I am excited
about designing systems for emerging hardware technologies, particularly optical networks and optical compute.
Such hardware has the potential to provide manifold improvements in both performance and energy efficiency,
but harnessing this potential will require rethinking the system stack from the ground up. For example, optical
interconnects today can enable direct chip-to-chip communication using light [20], which raises questions such
as: What should network interfaces and network stacks for such systems look like? Similarly, optical compute
today offers a faster and more energy-efficient alternative for computations such as matrix multiplications [30],
which raises questions such as: How should we redesign our systems and programming abstractions to best
make use of such hardware?

In summary, I am enthusiastic about the challenges and opportunities awaiting systems researchers in the
coming years. I believe my experience in building systems with well-understood performance behavior will serve
me well given that such systems are becoming increasingly necessary. I am also interested in broader topics
in systems and am excited to address emerging technological challenges, such as new hardware substrates, and
societal challenges, such as energy efficiency.

References

[1] Cleaning up after BPF exceptions. https://lwn.net/SubscriberLink/969185/47c78a0491515046/.
2

Cruise Self-Driving Car Hits Pedestrian In San Francisco. https://www.sfchronicle.com/projects/2024/cruise-sf-colli
sion-timeline/.

[3] eBPF equivalence checker. https://github.com/sebymiano/ebpf-equivalence-check.

[4] Exceptions in eBPF - Linux Plumbers Conference 2023. https://lpc.events/event/17/contributions/1578/attachments
/1240/2521/Exceptions%20in%20BPF . pdf.

[5] Stack unwinding with exceptions in eBPF. https://lwn.net/Articles/938435/.
6

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In USENIX Symposium
on Operating System Design and Implementation, 2004.

[7] Kumar Kartikeya Dwivedi, Rishabh R. Iyer, and Sanidhya Kashyap. Fast, Flexible, and Practical Kernel Extensions. In
ACM Symposium on Operating Systems Principles, 2024.

Page 4 of 5


mailto:rishabh.iyer@berkeley.edu
https://lwn.net/SubscriberLink/969185/47c78a0491515046/
https://www.sfchronicle.com/projects/2024/cruise-sf-collision-timeline/
https://www.sfchronicle.com/projects/2024/cruise-sf-collision-timeline/
https://github.com/sebymiano/ebpf-equivalence-check
https://lpc.events/event/17/contributions/1578/attachments/1240/2521/Exceptions%20in%20BPF.pdf
https://lpc.events/event/17/contributions/1578/attachments/1240/2521/Exceptions%20in%20BPF.pdf
https://lwn.net/Articles/938435/

Research Statement Rishabh Iyer rishabh.iyer@berkeley.edu

g

9
[10]
11)
12]
[13]
14]
[15]
[16]
17)
18]
i
[20]
[21]
[22]
23]

24]
[25]

[26]
[27]
(28]
[29]

[30]

31]

Goldman Sachs. Al Poisted to Drive Significant Increase in Datacenter Power Demand. https://www.goldmansachs.com
/insights/articles/AI-poised-to-drive-160-increase-in-power-demand. [Last accessed on 2024-10-23].

Jan Hoffmann and Steffen Jost. Two Decades of Automatic Amortized Resource Analysis. In Mathematical Structures in
Computer Science, 2022.

Rishabh R. Iyer, Katerina Argyraki, and George Candea. Performance Interfaces for Network Functions. In Symposium
on Networked Systems Design and Implementation, 2022.

Rishabh R. Iyer, Katerina J. Argyraki, and George Candea. Automatically Reasoning About How Systems Code Uses the
CPU Cache. In USENIX Symposium on Operating Systems Design and Implementation, 2024.

Rishabh R. Iyer, Jiacheng Ma, Katerina J. Argyraki, George Candea, and Sylvia Ratnasamy. The Case for Performance
Interfaces for Hardware Accelerators. In Workshop on Hot Topics in Operating Systems, 2023.

Rishabh R. Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina J. Argyraki, and George Candea. Performance
Contracts for Software Network Functions. In Symposium on Networked Systems Design and Implementation, 2019.

Rishabh R. Iyer, Musa Unal, Marios Kogias, and George Candea. Achieving Microsecond-Scale Tail Latency Efficiently
with Approximate Optimal Scheduling. In Symposium on Operating Systems Principles, 2023.

Marios Kogias, Rishabh R. Iyer, and Edouard Bugnion. Bypassing the Load Balancer without Regrets. In Symposium on
Cloud Computing, 2020.

Ao Li and Ning Zhang. Data-flow Availability: Achieving Timing Assurance in Autonomous Systems. In USENIX Symposium
on Operating Systems Design and Implementation, 2024.

Dana Lu, Boxuan Tang, Michael Paper, and Marios Kogias. Towards Functional Verification of eBPF Programs. In
Proceedings of the ACM SIGCOMM 2024 Workshop on eBPF and Kernel Extensions, 2024.

Jiacheng Ma, Rishabh R. Iyer, Sahand Kashani, Mahyar Emami, Thomas Bourgeat, and George Candea. Performance
Interfaces for Hardware Accelerators. In USENIX Symposium on Operating Systems Design and Implementation, 2024.

Survey of NF Operators and Results. Taken from Microscope [SIGCOMM’20]. https://www.dropbox.com/s/66cp4k3wl8
zm0g5/survey.pdf?d1=0. [Last accessed on 2024-03-15].

The Future of Chip Connectivity. https://ayarlabs.com/blog/thefuture-of-chip-connectivity-ucie-and-optical-i
-o-fags-explained. [Last accessed on 2024-10-23].

Wolfgang Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies. Springer Publishing
Company, 2013.

Simbricks: Fast Full-System Virtual Prototyping for Heterogeneous Computer Hardware. https://www.simbricks.io. [Last
accessed on 2024-10-23].

Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling with Exception-Less System Calls. In Symposium
on Operating Systems Design and Implementation, 2010.

The Cost of Latency. https://perspectives.mvdirona.com/2009/10/the-cost-of-latency. [Last accessed on 2024-03-15].
vLLM Performance Update and Roadmap. https://blog.vllm.ai/2024/09/05/perf-update.html. [Last accessed on
2024-10-23].

Why Brands are Fighting over Milliseconds. https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are
-fighting-over-milliseconds. [Last accessed on 2024-03-15].

x86 Support for User Interrupts. https://lwn.net/Articles/869140/. [Last accessed on 2024-03-15].

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing.
In USENIX Symposium on Networked Systems Design and Implementation, 2012.

Arash Pourhabibi Zarandi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi. Cerebros: Evading the RPC Tax in
Datacenters. In International Symposium on Microarchitecture, 2021.

Hailong Zhou, Jianji Dong, Junwei Cheng, Wenchan Dong, Chaoran Huang, Yichen Shen, Qiming Zhang, Min Gu, Chao
Qian, Hongsheng Chen, et al. Photonic Matrix Multiplication Lights up Photonic Accelerator and Beyond. Light: Science
& Applications.

Kan Zhu, Yilong Zhao, Liangyu Zhao, Gefei Zuo, Yile Gu, Dedong Xie, Yufei Gao, Qinyu Xu, Tian Tang, Zihao Ye, Keisuke
Kamahori, Chien-Yu Lin, Stephanie Wang, Arvind Krishnamurthy, and Baris Kasikci. NanoFlow: Towards Optimal Large
Language Model Serving Throughput, 2024. On Arxiv https://arxiv.org/abs/2408.12757.

Page 5 of 5


mailto:rishabh.iyer@berkeley.edu
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://www.dropbox.com/s/66cp4k3wl8zm0q5/survey.pdf?dl=0
https://ayarlabs.com/blog/thefuture-of-chip-connectivity-ucie-and-optical-i-o-faqs-explained
https://ayarlabs.com/blog/thefuture-of-chip-connectivity-ucie-and-optical-i-o-faqs-explained
https://www.simbricks.io
https://perspectives.mvdirona.com/2009/10/the-cost-of-latency
https://blog.vllm.ai/2024/09/05/perf-update.html 
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds
https://www.forbes.com/sites/steveolenski/2016/11/10/why-brands-are-fighting-over-milliseconds
https://lwn.net/Articles/869140/
https://arxiv.org/abs/2408.12757

	Performance Interfaces for Systems Software and Hardware
	Designing Systems with Predictable Performance
	Future Research

