
Performance Interfaces for
Network Functions

Rishabh Iyer, Katerina Argyraki, George Candea

Semantic Interfaces

https://docs.orcale.com/javase/7/docs/api/java/net/Socket.html

Semantic Interfaces

Code-Level Model Checking in the Software Development Workflow, Chong et al., ICSE (2020)

An Ideal Interface

● Simple

○ Concise

○ Accessible

● Precise

Can there exist a performance interface?

● Simple

○ Concise

○ Accessible

● Precise

Performance Interfaces for NFs

● Concise: 100-1000x shorter than NF implementations

● Accessible: use similar primitives as semantic specifications

● Precise: predict NF latency with avg. error of 8%

● Simple, precise performance interfaces are useful!
○ NF developers can identify performance regressions/bugs

○ NF operators can identify root cause of performance anomalies

Performance Interfaces for NFs

Performance interfaces summarize NF latency
simply and precisely, just like semantic interfaces

summarize functionality

Outline

● What do performance interfaces look like?

● What could one do with performance interfaces?

● How to extract performance interfaces from NF code?

● Evaluation

Outline

● What do performance interfaces look like?

● What could one do with performance interfaces?

● How to extract performance interfaces from NF code?

● Evaluation

SPtakes the same arguments as P
and returns P’s performance.

The performance interface
of a program P is a program SP

Latency Metrics:

● x86 instructions
● x86 mem-ops
● CPU cycles

PCVs = Performance
Critical Variables

PCVs capture the effect
of state on NF latency

P(P(I)):
P’s performance
given input I

|Sp(I) - P(pi(I))| < r

r: Sp’s resolution

coarser
resolution

General-case interfaces

● Precise ✓

General-case interfaces

● Precise ✓
● Simple

○ Concise ✓

General-case interfaces

● Precise ✓
● Simple

○ Concise ✓
○ Accessible ?

General-case interfaces

PCVs hard to understand for those
who didn’t write the code

● get joint PCV distribution
from given deployment

● replace PCV formulas
with desired statistic

Deployment-specific interfaces

What does a performance interface look like?

● Program with same inputs that returns the latency

● Resolution: granularity at which interface specifies performance

● General-case interfaces express latency as a function of PCVs

● Deployment-specific interfaces express latency as concrete statistics

Outline

● What do performance interfaces look like?

● What could one do with performance interfaces?

● How to extract performance interfaces from NF code?

● Evaluation

Developer: Identify latency regressions

Maximum packet processing latency in Katran

Operator: Root-cause diagnosis

Outline

● What do performance interfaces look like?

● What could one do with performance interfaces?

● How to extract performance interfaces from NF code?

● Evaluation

Performance Interface eXtractor (PIX)

● Input: NF source code in C. Output: Python performance interfaces

● Limitations:

○ Relies on Exhaustive Symbolic Execution (ESE)
■ Single-threaded, static loop bounds, cleanly separated state

○ Interfaces do not account for performance interference

○ Interfaces do not reason about queueing latency

PIX Overview

● Consists of 2 parts: a back-end and front-end

● PIX back-end run by NF developers
○ Input: NF source in C.
○ Output: General-case (GC) interfaces

● PIX front-end run by NF operators
○ Inputs: NF binary, GC interface, packet trace.
○ Output: Deployment-specific interfaces

PIX Back-end

PIX Back-end

Step 1: Bolt

● Exhaustively symbexes the NF code
● Plugs-in contracts for pre-analyzed data structures
● Output:

○ # of x86 instructions, mem-ops per execution path

PIX Back-end

Step 2: NF Hardware Model

● LLC misses are primary cause of increased latency
● Taint analysis to identify potential miss sites

PIX Back-end

Step 3: Python translation

● SMT queries → human-readable python expressions

PIX Back-end

Step 4: Resolution-based merging

● Eliminates implementation details irrelevant at a
given resolution

Outline

● What do performance interfaces look like?

● What could one do with performance interfaces?

● How to extract performance interfaces from NF code?

● Evaluation

Evaluation

● Extracted interfaces for 12 NFs written using DPDK and eBPF XDP

○ 3 NFs used in production (Katran LB, Natasha NAT, Cilium filter)

● Eval questions:

○ Accuracy of PIX-extracted interfaces

○ Time required to extract interfaces

○ Simplicity of PIX-extracted interfaces

■ 100-1000x simpler than NF implementations

Prediction accuracy across deployments
● Evaluated accuracy for 4 deployments

○ 2 workloads (typical, adversarial) x 2 servers (Intel Sandy Bridge, AMD EPYC)
○ Absolute NF latency varies by up to 3x

PIX-extracted interfaces correctly adapt to different deployments

Prediction accuracy across latency percentiles

PIX-extracted interfaces are accurate until the 99th percentile

Time required to extract interfaces

Extracting performance interfaces can be part of the regular NF development cycle

Performance Interfaces for NFs

Performance interfaces summarize NF latency
simply and precisely, just like semantic interfaces

summarize functionality

Paper and code available at:
https://dslab.epfl.ch/research/pix

Backup Slides

Backup: Complexity (Katran Load Balancer)

Backup: PIX Prediction error

Backup: Bolt Prediction Error

