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Abstract
The increased use of hardware acceleration has created a need
for efficient simulators of the end-to-end performance of accel-
erated hardware–software stacks: both software and hardware
developers need to evaluate the impact of their design choices
on overall system performance. However, accurate full-stack
simulations are extremely slow, taking hours to simulate just
1 second of real execution. As a result, development of accel-
erated stacks is non-interactive, and this hurts productivity.

We propose a way to simulate end-to-end performance that
is orders-of-magnitude faster yet still accurate. The main idea
is to take a minimalist approach: We simulate only those com-
ponents of the system that are not available, and run the rest
natively. Even for unavailable components, we simulate cycle-
accurately only aspects that are performance-critical. The key
challenge is how to correctly and efficiently synchronize the
natively executing components with the simulated ones.

Using this approach, we demonstrate 6× to 879× speedup
compared to the state of the art, across three different hardware-
accelerated stacks. The accuracy of simulated time is high: 7%
error rate on average and 14% in the worst case, assuming
CPU cores are not underprovisioned. Reducing simulation
time down to seconds enables interactive development of ac-
celerated stacks, which was until now not possible.

1 Introduction
From datacenters to hand-held devices, modern systems in-
creasingly rely on hardware accelerators to speed up a variety
of computations, including machine learning [4, 27, 28, 45],
video processing [16, 48], compression [53], encryption [12,
25], and system infrastructure tasks [3, 24, 31].
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Building such accelerated systems requires repeated full-
stack simulations, i.e., simulations that model and evaluate the
entire computing stack, from the hardware (e.g., processors,
memory, accelerators) all the way to the applications (e.g., user
programs, libraries), while executing the actual software. For
example, systems developers do not always have access to
physical accelerators—due to budget constraints, or because
the accelerator has not been taped out yet—and thus rely on
simulation to develop and optimize the software stack. As
another example, increasingly more organizations co-design
in-house hardware accelerators together with the software that
uses them [4, 5, 24, 27, 31, 40, 41]—both the hardware and
software engineers employ full-stack simulation to evaluate
the end-to-end benefits of the hardware design choices before
committing to silicon fabrication. As a result, full-stack sim-
ulators have become day-to-day tools not only for hardware
engineers and microarchitects but also for systems developers
who build and optimize accelerator-integrated software stacks.

However, full-stack simulation incurs serious slowdowns,
on the order of 10,000× relative to native execution: simulating
1 second of execution time takes hours of wall-clock time [13].
The reason is that every component in the system is simulated
with accurate, computationally expensive models. The out-
come is that development of accelerated hardware-software
stacks is bottlenecked by simulation time. This forces develop-
ers into productivity-sapping batch-mode development: they
evaluate new changes by grouping microbenchmark simula-
tions and then waiting hours or days for the results. This is
reminiscent of programming with punch cards in the 60s.

Much of this slowdown stems from a design that is
historically justified: simulators were originally meant for
microarchitects, who relied on cycle-level simulation to in-
spect microarchitectural state in detail and to experiment with
modifications to low-level hardware components. This level of
visibility was essential for their needs. For systems developers
higher up in the stack, this inherited cycle-level visibility is no
longer justified, as it introduces overhead without delivering
proportional value for systems developers. Full-stack simu-
lation calls for a different set of trade-offs that better match
the shift in needs and how systems are built today—more in-
tegrated, spanning many layers, and centered on system-level
software-hardware interactions. We therefore ask the question:
If a full-stack simulator offered only the visibility needed by
systems developers, how much faster could it be?
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To answer this, we propose a design for full-stack simu-
lation based on the following two-part minimality principle:
(1) simulate only components that are not available, and run
natively whatever is available (unless finer-grained visibility
is desired, in which case they should be simulated); and (2) for
unavailable components, simulate in a cycle-accurate manner
only aspects that are performance-critical, i.e., necessary to
answer the desired performance questions with the desired
level of granularity—for the rest, simulate just enough for the
stack to work correctly. For example, instead of running in a
simulator like gem5 [9], software can be executed natively if
the system’s target CPU is available, provided that microar-
chitectural visibility of the CPU is unnecessary and the CPU
internals are not being modified. Similarly, hardware acceler-
ators can be simulated at the microarchitectural level instead
of gate-level, saving the overhead of gate-level simulation if
systems developers do not require it. The key challenge in
implementing this principle is synchronizing fast, natively ex-
ecuting components with slower, simulated ones, in a way that
avoids undue slowdown and preserves overall accuracy.

Our design has two components: a native-execution orches-
trator (NEX) and an accelerator di-simulator (DSim). NEX
embodies part (1) of the minimality principle by enabling the
co-existence of natively executing software with simulated
accelerators, and then synchronizing the native and simulated
executions strictly when necessary. The basic idea of simu-
lating only what must be simulated appeared already in the
Wisconsin Wind Tunnel [49]. However, doing this for a full sys-
tem stack running on CPUs alongside hardware accelerators
(as opposed to a parallel program running on a shared-memory
multiprocessor [49]), and weaving together the resulting com-
ponents, requires a very different design.

DSim embodies part (2) of the principle by simulating an ac-
celerator circuit on two decoupled tracks (i.e., di-simulation):
the performance track computes the number of cycles needed
by the accelerator to process each request it receives, and the
functionality track computes the actual response of the acceler-
ator. This split approach is inspired in part by trace-based sim-
ulation [42, 56, 57, 62]. The performance track employs the
recently proposed Latency Petri Net (LPN) abstraction [37].
An LPN provides a basis for cycle-accurate simulation of
only the performance-critical aspects of an accelerator (e.g.,
microarchitecture-level simulation) while abstracting away
the low-level, cycle-by-cycle updates of gates and wires. The
functional track employs standard functional simulation.

We evaluate a prototype of NEX+DSim on three hardware-
accelerated stacks: deep learning, RPC message serialization,
and JPEG image decoding. We demonstrate that NEX and
DSim together are 6× to 879× faster than state-of-the-art full-
stack simulation. Simulation accuracy is high: across all evalu-
ated accelerators, the simulated time is at worst within 14% of
the baseline, and within 7% on average, unless CPU cores are
underprovisioned. For the deep learning stack, we also validate
NEX+DSim against FPGA-based testbeds: simulated time is

within 6% of the real system on average, and at worst within
12%. Unlike regular system simulators, NEX’s native execu-
tion enables it to run arbitrary software stacks with very little
configuration or cross-compilation. Furthermore, NEX and
DSim can be used independently of each other, and can thus
be integrated into existing workflows that rely on proprietary
RTL or processor simulators. We define general interfaces for
such integrations and evaluate the possible combinations for
our three accelerated stacks.

The visibility-vs-speed trade-off inherent in the minimality
principle makes the orders-of-magnitude speedup come at
the price of reduced visibility: NEX+DSim does not produce
detailed hardware-level execution traces. Instead, NEX+DSim
only provides coarse-grained traces, reporting how cycles are
spent as execution weaves between CPU threads and accel-
erators. Despite this limitation, we believe that the use cases
described above—developing an accelerated stack without
the accelerator, and software/hardware co-design—are better
served by fast simulation with coarse-grained visibility.

Using NEX and DSim, developers can interactively simu-
late a full system stack and quickly iterate over design changes
in both the software and accelerators. Coarse-grained traces
can help developers locate bottlenecks in the full system stack
more easily. And end-to-end full-stack simulation can now be
done much earlier in the design process. For final functional
and performance verification, slower, fully cycle-accurate
simulators can be used just before deployment or tapeout.

This paper makes two contributions:

• A practical realization of the minimality prin-
ciple for full-stack performance simulation of
hardware-accelerated systems, demonstrating orders-of-
magnitude speedups while preserving good accuracy.

• A qualitative change for developers of hardware-
accelerated stacks, who can now transition from
batch-mode to interactive-mode development. They can
interactively experiment with both the software stack
and the hardware parameters, in quick iterations.

In the rest of this paper, we provide background and an
overview (§2), describe the design of NEX (§3) and DSim (§4),
and show how NEX and DSim can be used both together and
individually (§5). We evaluate NEX and DSim (§6), discuss
limitations (§7) and related work (§8), and conclude (§9).

NEX and DSim are open-source and freely available at [47].

2 Background and Overview
In this section, we provide an overview of how full-stack simu-
lation is done today by developers engaged in either pure soft-
ware development or in software/hardware co-design (§2.1),
and then describe, at a high level, how our proposed minimalist
approach to full-stack simulation works (§2.2).
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2.1 State-of-the-Art Full-Stack Simulation
Developers of a hardware-accelerated software stack who do
not have access to all the necessary accelerators would use a
full-stack simulator to run their code during development. They
want to know, for instance, how the accelerated stack would
perform compared to a CPU-only stack. If the accelerated
stack is slow, then where is the bottleneck? They would want
to tweak the software (or the hardware accelerator, in the case
of co-design) and quickly see if performance improves.

For full-stack simulation, the host processor and memory
subsystem are often simulated using system simulators like
gem5 [9, 35], illustrated in Fig. 1. The developer runs their
unmodified software stack (the application + OS) in gem5,
which simulates the target system with cycle-level fidelity. The
software runs as if it were on a real machine, with the CPU,
memory, and interconnect behavior modeled by gem5.
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Figure 1. Simplified overview of a general full-stack simulation
framework, in the style of Simbricks [33]. Gem5 simulates the
host system, while RTL simulators or custom models simulate the
accelerators. Accelerators are often simulated as PCIe attached
devices, but different placements, such as having the accelerator
on-chip, can also be simulated by configuring a faster interconnect.
DMA requests emitted by the accelerators are handled by gem5.

Accelerators can be simulated, for example, by passing the
accelerator’s RTL (e.g., Verilog) to a cycle-accurate RTL sim-
ulator like Synopsys VCS [55], Cadence Xcelium [10], or the
open-source Verilator [61]. The RTL simulator runs the Verilog
model of the accelerator, executing the offloaded computation
at the register-transfer level of detail. When available, a gem5
model of the accelerator provides a more efficient alternative
to simulating the RTL, though one would have to develop
it in-house for all but the most commonly used accelerators.
Coarser-grained, analytical models can be even more efficient,
but their accuracy is typically low.

The gem5 system simulator executes the software stack in
coordination with the accelerator simulators. When the soft-
ware stack needs to pass a task to a hardware accelerator, it
either writes the task to accelerator control registers through
Memory-Mapped IO (MMIO), or puts it in a shared memory
buffer and lets the accelerator fetch the task through Direct
Memory Access (DMA). Gem5 simulates either of these mech-
anisms, and then the accelerator simulator starts a new task.

Gem5 now simulates the host in parallel with the accelera-
tors and synchronizes their timestamps periodically. It listens
for DMA requests from the accelerators and simulates them
alongside CPU memory accesses. When the accelerator com-
pletes the task, the software running in gem5 finds out either
by polling the accelerator’s control registers through MMIO
or because the accelerator sends an interrupt (processed by
gem5). Software running in gem5 then reads the accelerator’s
output. Depending on how an accelerator operates, multiple
tasks can be issued to it without waiting for the previous task
to finish.

A full-stack simulator has both upsides and downsides. First,
it can provide an accurate estimate of performance, which is
a central objective of simulation when developing hardware-
accelerated systems. Second, it can provide a detailed trace
of how the simulated hardware executed, thus providing low-
level data that can lead to insights into what is affecting per-
formance. The key downside is that full-stack simulation is
slow: the time to run the simulation is typically 4 orders of mag-
nitude greater than the simulated time [13]. This slowdown
makes it impractical to use in full-stack system development,
which often requires evaluating activities that execute over
long timescales and span the stack, such as OS mechanisms for
memory management, page migration, or heap compaction.

2.2 Minimalist Full-Stack Simulation
Our work addresses use cases where getting fast answers to
end-to-end performance questions dominates the need for fine-
grained simulation traces. Specifically, we exploit the willing-
ness of developers to give up some granularity of the hardware
events in the execution trace in exchange for significant reduc-
tions in the simulation slowdown factor. We propose a design
consisting of a native execution orchestrator (NEX) and an
accelerator di-simulator (DSim).

The NEX orchestrator handles system-wide time synchro-
nization. It relies on the fact that the software running on
the CPUs communicates with the accelerators through well-
defined interfaces, namely shared memory regions or MMIO
operations. NEX runs the software natively, in microsecond-
scale epochs, controlled by a custom scheduler that pauses
only when the software attempts to interact with a simulated
component. At this point, the simulated components are al-
lowed to “catch up” in virtual (simulated) time, thus ensuring
that interactions happen at the correct virtual time.

In terms of Fig. 1, we replace the gem5 component (in blue)
with NEX. Unlike gem5, NEX runs mostly natively (i.e., does
not simulate the CPU microarchitecture) and simulates only
accelerator-relevant interactions: MMIO accesses, shared-
memory communication, and accelerator-initiated DMAs.

DSim decouples the simulation of accelerator performance
from accelerator functionality. For performance, DSim builds
upon the Latency Petri Net (LPN) abstraction [37]. The LPN
of an accelerator is essentially an abstract circuit that is
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Figure 2. Architecture of the NEX orchestrator. NEX coordinates
the execution of both the CPU threads and the accelerator simulators,
keeping them synchronized. The NEX runtime (§3.2) simulates
interactions with the accelerator (i.e., control-register reads/writes
through MMIOs, and shared-memory accesses for task metadata),
while advancing the accelerator simulators. The interconnect and
memory simulators in the NEX runtime handle DMA operations
originating at the accelerator simulators.

“performance-equivalent” to the accelerator, in that it only
captures essential performance characteristics (like pipeline
stages and resource contention) without modeling every clock
cycle and hardware detail or signal transition.

This makes LPNs an efficient basis for performance
simulation that is both accurate and fast. For functionality,
DSim reproduces all interactions with the accelerator’s
external environment (e.g., control-register updates and
timings of all DMAs issued from the accelerator), ensuring
that the performance effects of these interactions are captured
precisely. As a result, an accelerator di-simulated with
DSim is externally indistinguishable from the corresponding
RTL simulation. So, abstractly speaking, DSim discards
from performance simulation all performance-irrelevant
functionality and, conversely, discards from functional
simulation all performance-specific aspects.

In our proposed design, developers can mix and match NEX
and DSim independently of each other with system simulators
like gem5 or with RTL simulators, as shown in Table 1.

We now describe the NEX orchestrator (§3), the DSim di-
simulator (§4), and the interfaces that enable the modular com-
position of these two new elements with other simulators (§5).

3 The NEX Orchestrator
The NEX orchestrator consists of two parts, the NEX scheduler
and the NEX runtime (Fig. 2). The NEX scheduler controls all
threads in the system and overrides the OS kernel scheduler. It
maintains a global virtual (simulated) time. The NEX runtime
is in user-space and handles synchronization and interactions
between the host CPUs and the accelerator simulators.

NEX builds on the insight that achieving high accuracy in
full-stack performance simulation does not strictly require
simulating the host CPUs. Careful synchronization between

the native host CPUs and accelerator simulators can achieve
the same level of accuracy, while yielding significant benefits
in terms of reduced simulation time.

The NEX orchestrator manages virtual time (i.e., the sim-
ulated system’s time progression) distinctly from physical
wall-clock time. NEX advances the simulation by discrete
virtual-time intervals called epochs, and each epoch increases
virtual time by a fixed epoch duration. Application threads
run natively on the CPUs, progressing epoch-by-epoch, under
the control of the NEX scheduler. Accelerator simulators, con-
trolled by the NEX runtime, proceed differently, depending on
the synchronization mode, as described below.

The NEX orchestrator provides two basic modes: eager
synchronization and lazy synchronization. They both serve
the purpose of preventing accelerators and native CPUs from
advancing past each other across MMIO, shared-memory, or
DMA interaction boundaries. Eager synchronization, as seen
in typical full-stack simulators [33], advances accelerator simu-
lators in lock-step with the native CPUs, at every epoch bound-
ary. In contrast, lazy synchronization advances the accelerator
simulators only when the application attempts to interact with
them. To regain control upon such interaction attempts, the
NEX runtime uses system hooks to force application threads
to trap on MMIOs and on accesses to memory shared between
the CPUs and the accelerators.

An invariant for both modes is that any synchronization
event (interaction) in epoch 𝑖 must be fully resolved by the NEX
runtime before any application thread proceeds to epoch 𝑖+1.

3.1 NEX Synchronization
Eager synchronization advances both CPUs and accelerator
simulators in small locked steps, to ensure that any event sent
at time 𝑡 is received at 𝑡+𝛿 , where 𝛿 is the link delay between
the sender and receiver. This has two drawbacks: First, such
lock-step synchronization forces the entire system simulation
to proceed at the pace of the slowest simulator. Second, every
synchronization incurs a fixed cost (including the exchange of
messages among simulators and the pausing/resuming of the
simulation) and, the more frequently this is done, the greater
the overhead and hence slowdown of the simulation.

Lazy synchronization mitigates these drawbacks by partially
decoupling how virtual time advances in the CPUs vs. the ac-
celerators: NEX splits the host simulation into a dedicated
DMA simulator and a simulator for everything else. The DMA
simulator is akin to a clutch in a gearbox: The dedicated DMA
simulator receives DMA events from the accelerators and pro-
ceeds in lock-step with the accelerator simulators—on the rest
of the host, execution advances freely, without synchroniza-
tion, until the host attempts to communicate with an accelerator
(e.g., via MMIO). When that happens, NEX catches up all ac-
celerator simulators and the DMA simulator by taking them
through multiple simulation epochs at once. The DMA simula-
tor ensures that all DMAs up to the current epoch are visible in
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the host’s memory. A minor drawback of this approach is that
it cannot model memory contention between the CPU and the
accelerator—doing so would require tracing all CPU memory
accesses, not just the ones interacting with the accelerator, and
that renders native execution impractical.

Since lazy synchronization ignores accelerator-initiated
interrupts, NEX employs a hybrid synchronization scheme
for accelerators that use interrupts. In this scheme (not shown
in Fig. 2, to avoid clutter), periodic synchronization every
few epochs is layered on top of lazy synchronization. Lazy
synchronization still promptly handles all host-to-accelerator
interactions within each periodic interval, while accelerator-
to-host interrupts are delivered at the interval boundaries.
The interval length adapts to the required interrupt frequency:
shorter intervals support higher-frequency interrupts but
incur larger overhead, whereas longer intervals lower the
synchronization cost when interrupts are infrequent.

3.2 NEX Runtime
For lazy synchronization, the NEX runtime performs two func-
tions: (1) trap when application threads interact with accelera-
tors; and (2) resolve the traps, i.e., advance accelerator simula-
tors to the current simulation epoch and handle the event that
caused the trap.

For (1), NEX allocates memory to share with the accelera-
tors and relies on memory protection to intercept accesses to it
via ptrace [19]. The accelerator drivers then map this memory
and mprotect() it—a minor code addition to the driver. If the
driver uses MMIO, it treats the memory as an MMIO region,
otherwise it uses it as a task buffer. When a thread accesses the
memory, it causes a trap that results in a segmentation fault,
which NEX intercepts and recognizes as an event to process.
Data buffers passed between the software and the accelerator
require no special handling because accessing them should be
already synchronized via the corresponding task buffers.

For (2), when the NEX runtime intercepts a read or write, it
first advances the accelerator simulators to the current epoch,
i.e., to the latest virtual-time epoch reached by the NEX sched-
uler. It then checks whether the faulting instruction was a read
or a write, gets the target of the access, performs the access to
the accelerator’s control register or shared-memory region, and
completes the instruction. For instance, completing a memory-
to-register move instruction entails storing the read data into
the target CPU register. In this way, the intended read or write
occurs after the accelerator simulators have been synchro-
nized (so the data access is consistent and correct), and occurs
transparently to the application thread. The NEX runtime then
informs the NEX scheduler that the trap is fully resolved.

Under hybrid synchronization, the NEX runtime may also
receive synchronization requests from the NEX scheduler, in
which case it advances the accelerator simulators to the current
epoch. If the runtime receives an interrupt from an accelerator,
it forwards the interrupt as a user-space signal to the driver

responsible for the accelerator. The NEX runtime then informs
the NEX scheduler that the synchronization event completed.

When a trap occurs or a synchronization request arrives, the
NEX scheduler does not allow any application thread to pro-
ceed to the next epoch. It allows all threads (except the one that
trapped) to complete their epoch, thus avoiding the overhead
of interprocessor interrupts. Once the trap is fully resolved or
the synchronization is completed, it resumes all threads.

Finally, the NEX runtime makes gettimeofday() and
clock_gettime() return virtual time. We overwrite these func-
tions with custom versions at application load time using
LD_PRELOAD [18]. Alternatively, NEX could intercept time-
related system calls using ptrace or seccomp filters.

Reducing traps with NEX tick mode. Advancing virtual time
in fixed epoch increments introduces inaccuracy when threads
trap mid-epoch, because these threads resume execution with
virtual time corresponding to the end of the epoch rather than
the mid-epoch trap point. To reduce the number of traps (and
thus inaccuracy), NEX supports a tick mode in which the driver
batches multiple accesses and triggers a single trap using a
designated illegal instruction. This requires small changes in
the accelerator driver, to explicitly tick at certain places.

3.3 NEX Scheduler
The NEX scheduler is implemented in Linux eBPF, using the
sched-ext [51] kernel extension. It implements an epoch-based
policy we call EBS, which schedules application threads on
epoch boundaries and ensures that threads do not enter epoch
𝑖+1 until all application threads completed epoch 𝑖, and all
synchronization events and traps of epoch 𝑖 are fully resolved.

During native execution, virtual time flows at the same rate
as physical time. To regain control over an application thread
after executing for an epoch’s worth 𝑒 of virtual time, NEX
must preempt it after an equivalent period of physical time.
So, when resuming a thread, the NEX scheduler sets a timer
to expire after time 𝑒+𝛿 , where 𝛿 is a calibration constant that
accounts for the time between when the scheduler decides to
resume a thread and when the CPU actually starts executing
that thread’s instructions. In this way, the thread gets to effec-
tively execute for exactly the epoch duration 𝑒, in both virtual
and physical time. We use core-local timer interrupts to control
thread execution in a way that is simultaneously precise and
has a fixed, low overhead. 𝛿 is specific to the CPU–kernel com-
bination and is obtained automatically on startup—it accounts
for the time to restore a thread’s context, the microarchitectural
disruption induced by thread preemption, etc.

To reduce overhead of microarchitectural interference, we
reserve a set of cores for simulation, and we pin threads to
cores for an integer multiple of epochs 𝜋 =𝑁 ·𝑒, which is on
par with a normal scheduling slice (e.g., 20 msec). Threads can
only migrate between cores on a time granularity of 𝜋 , not of 𝑒.

Complementary scheduling on top of EBS: As described
thus far, NEX can accurately simulate systems in which the
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number of application threads does not exceed the number
of virtual cores, i.e., the number of hardware cores in the
simulated system. Under EBS, all runnable threads are
assumed to execute in parallel on these virtual cores, which
is accurate only when the thread count is less than or equal to
the virtual core count. However, in oversubscribed scenarios—
where there are more application threads than available
cores—threads must share cores. In such cases, NEX needs to
not only enforce EBS but also mimic the kernel’s prioritization
among competing threads to maintain simulation fidelity.

To ensure accurate simulation for oversubscribed scenarios,
NEX allows developers to specify the thread scheduling
policy used in their systems—we call this the complementary
scheduling policy, because it operates in conjunction with EBS.
When the number of runnable threads exceeds the number
of virtual cores, the complementary policy selects which
subset of threads should execute during each epoch, thereby
simulating the target system’s scheduling behavior. NEX’s
default complementary policy provides fair scheduling and
load balancing across virtual cores, similar to Linux. Users can
replace it with their own policies. We discuss implementation
details in §A.1 and show how such complementary scheduling
policies improve simulation accuracy in §6.6.

3.4 Warping Time with NEX
In addition to normal simulation, the NEX scheduler provides
developers with three ways to control the flow of time. To
use any of the three features, developers mark the start and
end of a code region to which the feature should apply. These
annotations then turn into writes to a protected memory
region, which causes the executing thread to trap into the NEX
scheduler; the writes themselves contain control messages
that NEX interprets and acts upon.

CompressT enables developers to “speed up” a portion of
code by a given factor, i.e., to compress time. This feature al-
lows developers to explore the potential benefits of offloading
specific code regions to an accelerator. To use it, developers
mark the target region and specify the assumed acceleration
factor. NEX then applies the hypothetical acceleration and
reflects the overall impact on system performance.

This acceleration is hypothetical on multiple levels: First,
developers do not necessarily have (or know of) an accelerator
to which that code can be offloaded. Second, even if the
accelerator existed, there would be no certainty that the
indicated acceleration factor could be achieved. This feature
allows developers to do what-if analyses of end-to-end
performance without actually implementing the offload. A
similar idea appears in Coz [15].

To implement this, NEX proportionally extends the relevant
thread’s scheduling slice beyond the epoch duration, allowing
it to execute longer in physical time while still consuming
only an epoch’s worth of virtual time. Multiple threads can
use CompressT concurrently.

SlipStream allows developers to maximally fast-forward
a portion of code that is uninteresting, such as setup code that
does not interact with accelerators. NEX then simulates that
portion as fast as possible while still staying on the virtual
timeline. Underneath the covers, NEX sets the epoch duration
to a large value (by default 20 msec), then resets it at the end
of the code region, and forces an immediate reschedule of
threads. This enables reducing simulation time for segments
whose execution time is of no interest.

JumpT is the most extreme form of time warp: code ex-
ecutes in zero virtual time. In other words, when JumpT starts,
the thread exits the virtual timeline entirely, executes outside
virtual time, and then re-enters the timeline exactly where
it exited. NEX implements this by removing the thread from
EBS and running it under the standard scheduler while virtual
time is paused. Multiple threads can use JumpT concurrently
within the same epoch—the NEX scheduler waits for all of
them to finish JumpT-ing before advancing the epoch.

We demonstrate the use of CompressT and JumpT in §6.4.

4 The DSim Di-Simulator
DSim simulates the operation of accelerators on two decoupled
tracks: The performance track computes the number of cycles
taken by each request to the accelerator (§4.1), and the func-
tionality track computes the response of the accelerator (§4.2).
The functional simulation of the accelerator includes every
interaction with its external environment (e.g., control-register
updates and timings of all DMAs issued from the accelerator),
ensuring that a DSim-simulated accelerator is indistinguish-
able from the real accelerator or its corresponding RTL simu-
lation. Even though the two tracks are decoupled, they must
synchronize occasionally (§4.3), to correctly timestamp the
external memory accesses and/or DMAs issued by the accel-
erator. These DMAs can then be accurately simulated by host
simulators (NEX, gem5, etc.), enabling precise end-to-end
cycle counts for the entire hardware–software stack.

DSim aims to replicate an accelerator’s externally observ-
able functionality and timing behavior with perfect fidelity—
from a black-box perspective, a DSim model is indistinguish-
able from the real accelerator it simulates. This enables DSim
to omit accelerator-internal details that do not affect external
behavior, and to simulate at a higher level of abstraction than
RTL simulators. This results in significantly faster simulation.

While DSim is indistinguishable from the outside, its im-
plementation requires the host simulator to provide zero-cost
DMA, i.e., the ability to perform DMAs without affecting vir-
tual time. As explained below, this capability is used to perform
functional simulation without affecting overall timing. In any
simulation environment that supports this feature, DSim can
serve as a drop-in replacement for RTL simulators.

DSim is versatile and can be used to simulate hardware other
than accelerators. For instance, we used DSim to construct in-
terconnect simulators (e.g., for a PCIe topology including a
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root complex) as well as cache and memory simulators. In-
terconnect, cache, and memory simulators expose identical
request/response interfaces, so they can be hierarchically com-
posed. For example, an interconnect simulator can be stacked
with a cache simulator. Multiple cache simulators can also be
stacked, one for each level (e.g., L1, L2, LLC, respectively).
Furthermore, by connecting DMA requests to the interface
at different layers, we can flexibly model various topologies
that connect the host to the accelerators. We integrated these
simulators into NEX (Fig. 2).

4.1 Computing Performance with LPNs
To efficiently compute cycle count (i.e., virtual time), DSim
runs a performance model of the accelerator based on a La-
tency Petri Net (LPN) [37]. The LPN abstraction models the
performance behavior of a circuit without also computing the
circuit’s functional outputs. At a high level, an LPN is a di-
rected dataflow graph that models how data flows through the
hardware circuit, along with the cycles spent in each process-
ing stage. LPNs capture latency, pipelining, parallelism, and
backpressure, which together determine the performance be-
havior. The authors envision that LPNs will either be shipped
by vendors with accelerators or written afterward (e.g., by
DSim users). Prior work has shown LPNs to be both accurate
and orders of magnitude faster than RTL simulators [37].

LPNs take the same input as the modeled hardware, so they
can be easily integrated with existing software drivers and
serve as replacements for RTL simulators.

We use the LPN toolchain—specifically the lpnlang [36]
Python package—to prototype accelerator models and com-
pile them into C++ simulators. In our experience, LPNs are
straightforward to write when the accelerator design is avail-
able: an LPN directly models the performance-relevant aspects
of the microarchitecture, mirrors the accelerator’s dataflow,
and is assembled module by module, much like RTL. Prior
work [37] reports that a hardware engineer can construct an
LPN for an accelerator in under three hours. Since hardware
engineers already build performance models at various abstrac-
tion levels as part of their standard workflow, LPNs can serve
as direct replacements, incurring little to no extra effort.

4.2 Computing Functionality
We implement the functionality track in DSim using a func-
tional simulator that computes the accelerator’s functional
results. While our primary goal is performance simulation, it
is essential to compute correct results for every operation, to
ensure correct operation of the hardware–software stack.

Developing a functional simulator is normally one of the
initial steps in accelerator development. This process typically
involves defining custom instructions and the request–response
interfaces between the software and the hardware. As a result,
most accelerators already have functional simulators that can

be directly incorporated into DSim, and these simulators are
available long before the accelerators are taped out.

Although a functional simulator focuses solely on func-
tionality, it must still accurately reflect key architectural and
implementation details. This includes implementing the ac-
celerator’s ISA, ensuring compatibility with software-defined
memory layouts shared outside the accelerator, and correctly
modeling DMA accesses to host memory. Unlike RTL im-
plementations (or LPNs), where tasks can be pipelined in the
accelerator, a functional simulator is simpler and processes one
task at a time (e.g., decoding an image, serializing a message,
or executing a series of instructions for a convolution). Since
they omit low-level microarchitectural details, functional sim-
ulators are orders of magnitude faster than RTL simulators.

4.3 Synchronizing Performance with Functionality
DSim synchronizes the LPN with the functional simulator
to ensure that accelerator reads and writes to host memory
occur at the right time (with accurate timestamps) and carry
the correct data. The memory requests get their content from
the functional simulator’s outputs, and their timestamps from
the requests issued by the LPN. For PCIe-attached accelerators,
all memory accesses take the form of DMA transfers.

The synchronization proceeds as follows: First, DSim runs
the functional simulator for the current accelerator task. During
this phase, it reads all relevant data from the host memory using
the zero-cost DMAs mentioned earlier. From this execution,
DSim obtains a complete trace of all DMA requests that the
accelerator would produce. Each request is tagged and stored
in FIFO queues. Tags typically exist at the hardware level and
are used to differentiate requests issued by different modules
or types of requests within the same module. For instance,
in the VTA accelerator [6], possible tags include LOAD_INPUT,
LOAD_WEIGHT, LOAD_ACC, and STORE_OUTPUT. Requests sharing
the same tag are stored in the same queue.

Next, DSim begins the LPN simulation for the task. As the
LPN advances, it emits DMA requests at specific timestamps,
each associated with a tag. For every emitted request, DSim
dequeues a pre-recorded DMA request from the FIFO queue
corresponding to the tag. The DMA request is then sent to the
host simulator as a tuple of the timestamp from the LPN and
the content from the functional simulator, ensuring accurate
simulation of DMA cost. For DMA writes, the DMA could
include the correct content, or the functional simulator could
use zero-cost DMA to write it directly to memory.

It is important to note that the timing of these DMAs is de-
termined not by the LPN alone but in conjunction with the host
simulator. The LPN cannot predict the timing of later DMAs
that depend on responses to earlier ones. However, as the sim-
ulation progresses with the host simulator, the LPN accurately
replicates the accelerator’s behavior, ensuring DMAs are is-
sued at the correct times and from the appropriate modules.
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5 Interfaces for Modular Composition
In addition to the NEX+DSim use case presented so far, it
is meaningful to also combine NEX or DSim independently
with alternate host or accelerator simulators. Such composition
lowers the adoption barrier for practitioners who are restricted
to specific processor or accelerator simulators. For instance,
companies like Intel have spent years tuning their proprietary
processor simulators, while others, like Google, have devel-
oped their own accelerator performance models akin to LPNs.

Composition → gem5
+ RTL

gem5
+ DSim

NEX
+ RTL

NEX
+ DSim

Our contribution ? ✗ ✓ ✓ ✓

Use in CPU
design exploration ?

✓ ✓ ✗ ✗

Use in accelerator
design exploration ?

✗ ✓ ✗ ✓

Range of simulation
slowdown

5,582×–
23,970×

2,766× –
21,833×

630× –
3,740×

36× –
253×

Visibility
through traces

full
reduced for
accelerator

reduced
for host

reduced
for both

Table 1. Comparison of different simulation modes. Except for
gem5+RTL, all other simulation modes are new. The simulation
speeds increase from left column to right column. Simulation slow-
downs are compared to real physical systems and calculated after
running real applications using a single JPEG or VTA accelerator (§6).

For simulators to compose, they need a communication
channel for exchanging timestamped messages representing
simulation events. We reuse the optimized shared-memory-
based channel provided by the SimBricks library [33].

Each simulator requires only an adapter to use this channel.
We implement adapters for NEX and DSim, and reuse gem5
and RTL adapters provided by SimBricks. We then modularly
compose them into full-stack simulators that provide different
trade-offs, as illustrated in Table 1. Simulating multiple
accelerators can be supported using this modular design as
well. We describe some aspects for each combination below,
and provide further details in §A.2.

gem5 + DSim. The DSim adapter provides a base class that
DSim models override. This base class handles MMIO from
the host and provides primitives for DSim to issue DMAs and
interrupts. As discussed in §4.3, DSim requires access to host
memory via zero-cost DMA. We provide a separate channel
for communicating such DMAs, and we handle them using
gem5’s functional memory accesses [35], which do not impact
the simulated cycles. NEX also supports zero-cost DMA.

NEX + RTL. Any RTL simulator that composes with gem5
can be used with NEX too, without any modifications.
Additionally, NEX simulates the latency of DMAs from the
RTL simulator using its built-in memory simulator.

NEX + DSim. To fully leverage the speed of DSim, we
augmented the SimBricks protocol to reduce unnecessary
inter-simulator synchronization messages (see §A.2).

We also offer a tighter integration method that does not use
the SimBricks channel. At the price of giving up modularity,
this method avoids exchanging messages over shared memory,
and can take full advantage of DSim’s speed.

6 Evaluation
In this evaluation section, we answer the following questions:

1. How does the simulation accuracy of NEX+DSim com-
pare to the state of the art (§6.2)? Quick answer: 7% error
on average, max 14%, across all our evaluation targets.

2. How does the simulation time of NEX+DSim compare
to a state-of-the-art full-stack simulator (§6.3)? Quick
answer: 6× to 879× faster.

3. Can NEX+DSim change today’s “batch-mode” way of
developing hardware-accelerated stacks (§6.4)?

4. How much do the individual parts of NEX and DSim con-
tribute to the accuracy and speed improvements (§6.5)?

5. How do NEX+DSim’s configuration options impact
overall speed and accuracy (§6.6)?

6. What is the impact of hybrid synchronization on
NEX+DSim’s simulation speed (§6.7)?

7. Can NEX+DSim reveal deeper aspects of performance
behavior beyond just total execution time (§6.8)?

6.1 Methodology
Accelerators. Our evaluation uses three accelerators, shown
in Table 2: a JPEG decoder, a deep-learning accelerator
(Apache VTA), and an accelerator for Protobuf serialization
and deserialization (Protoacc). VTA and Protoacc come
with their software stacks; for the JPEG decoder, we wrote
a software driver. Since DSim relies on the accelerator’s LPN,
which requires access to its implementation internals, our
evaluation is limited for now to open-source accelerators.

Accelerator Domain Software Stack Workload

VTA [6] Deep learning TVM ResNet-18,34,50 [23]
and yolo-v3-tiny [1]

Protoacc [31] RPC message
serialization

Protobuf
compiler

HyperProtoBench [20]

JPEG [60] Image
decoding

Custom
software driver

Images from Flickr
and Div2k datasets

Table 2. Accelerators used to evaluate NEX and DSim.

We now provide additional details about each accelerator
and the workloads we used when simulating them.

Apache VTA (Versatile Tensor Accelerator) [6] is a
deep-learning accelerator with hardware cores specialized for
matrix and vector operations. When simulating VTA, we run
inference computations for a number of deep neural networks
supported by VTA, including the ResNet-18, ResNet-34,
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ResNet-50 [23], and YOLO-v3-tiny [1] models. We also
simulate a multi-process ResNet-18 inference workload using
both 4 and 8 VTA accelerators in parallel.

Protoacc [31] is a co-processor-based accelerator designed
by Google for speeding up protocol buffer serialization and
de-serialization [21]. We only consider Protoacc’s serializer,
which is the most interesting part because multiple fields
within a message are serialized in parallel—deserialization
is sequential and thus not interesting. We had to make two
changes to Protoacc before we could use it in our evaluation:
First, Protoacc was integrated into a RISC-V SoC, so we
eliminated Protoacc’s dependencies on the RISC-V SoC and
made it possible to integrate it into any CPU via a standard
AXI interface [8]. Second, we added a translation layer to the
Protoacc software driver that allows Protoacc to operate on
physical addresses instead of virtual addresses. This was neces-
sary not due to a limitation of NEX but because the gem5+RTL
simulator we compare to does not support simulating RTL with
virtual addresses in gem5. Note that neither change affects
the accuracy or simulation time relative to the baseline—it’s
just that each simulator is evaluated on a variant of Protoacc.
As in the Protoacc paper [31], we evaluate Protoacc with the
HyperProtoBench benchmark suite [20]. Protoacc is used asyn-
chronously with the CPU. The CPU preprocesses and launches
a series of tasks to Protoacc, then waits for a batch to finish.

JPEG [60] is an image decoding accelerator that supports
various chroma, fixed and dynamic Huffman tables, and DQT
tables for JPEG input streams. We simulate JPEG with a
workload that consists of 50 JPEG images randomly sampled
from the Flickr [30] and Div2k [29] datasets. After decoding
each image, the workload applies a 2D kernel post-processing
step. We also simulate a multithreaded version using 2, 4, and
8 JPEG accelerators, with each thread using one accelerator.
Threads repeatedly fetch image-decoding and post-processing
tasks from a shared queue until completion.

Baseline real system. The VTA accelerator is already capable
of running on FPGAs, so we synthesized it and ran it on two
FPGAs, with the software stack running on the host CPU.

Baseline simulator. For the simulator baseline, we use
the state-of-the-art gem5 + cycle-accurate RTL simulator
provided by SimBricks [33]. The RTL simulator we use is Veri-
lator [61], which is the fastest open-source cycle-accurate RTL
simulator today. We use SimBricks version v0.2.0, which uses
gem5 version v24.0.0.1 and Verilator version v5.010. Since
SimBricks is primarily an orchestrator for gem5 and the RTL
simulator, we refer to our baseline as gem5+RTL hereafter.

Experimental setup. We run the VTA stack on two FPGA
testbeds at 160MHz and 201MHz, respectively. For compar-
ison with gem5+RTL, we ran all experiments on a 2-socket,
48-core Intel Xeon Gold 6248R processor. Each core was
clocked at a fixed frequency of 3GHz. We configured the
gem5 CPU to match the above Xeon using publicly available

information [63, 64]. The baseline and our three proposed
simulation modes (as described in Table 1) use the same hard-
ware setup and configuration. We assume that JPEG and VTA
are connected to the CPU via a PCIe channel with a one-way
delay of 400ns. Similarly, Protoacc is assumed to be placed
on-chip with an interconnect latency of 4ns. All accelerators
are configured to run at 2GHz and can directly access the
last-level cache (LLC). The interconnect used by the baseline
has a constant latency and by default handles a maximum of
16 concurrent read and write requests each, based on a real
hardware configuration. We configured NEX’s interconnect
similarly. NEX uses the default EBS scheduling and lazy
synchronization, unless specified otherwise. The epoch
duration is set to 1µs, with the calibration constant set to 850ns.
We use checkpointing in gem5 and similarly SlipStream in
NEX to fast-forward the application setup phase.

6.2 Simulation Accuracy
To evaluate the simulation accuracy of NEX+DSim, we
compare its reported total simulated time to the real execution
time on FPGA testbeds for VTA, and to the simulated time
of the baseline software-based simulator for all accelerators.

Table 3 describes the results for comparison with the
FPGA testbeds and gem5+RTL. We see that NEX+DSim is
accurate and incurs an average error of 6% compared to FPGA
execution and a maximum error of 12% across applications
that use a single VTA. Comparing to gem5+RTL, NEX+DSim
incurs an average error of 7% and a maximum error of 14%
across all benchmarks and accelerators.

Our discussions with practitioners indicate that error rates
of up to 20% are considered acceptable, which leads us to
conclude that our tools are accurate enough for developers to
use when iterating over designs and code alternatives.

Baseline Accelerator Avg Max Min E2E Latency
FPGA-1

VTA
4.3% 9.9% 1.1% 71ms–1822ms

FPGA-2 7.1% 11.4% 2.6% 48ms–1506ms

gem5+RTL
VTA 3.5% 7.3% 1.7% 47ms–700ms
Protoacc 9.0% 13.8% 1.9% 240µs–21ms
JPEG 9.5% 11.5% 8.3% 527ms–1955ms

Table 3. Simulation error (absolute) of NEX+DSim compared to
both real FPGA testbeds and the gem5+RTL, and the range of the
exact simulated time across applications. Statistics and ranges are
computed across all corresponding benchmarks.

6.3 Simulation Speed
To measure simulation speedup, we compare NEX+DSim’s
execution time to gem5+RTL’s for the various benchmarks.

Fig. 3 shows the results. We see that NEX+DSim provides a
6× to 879× speedup compared to gem5+RTL—this reduces the
simulation time from hours or tens of minutes down to seconds.
The speedups provided are greater for compute-intensive
benchmarks (e.g., Yolo-v3-tiny and various Resnet models),
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since native execution of the software on the host CPU and
the LPN abstraction used by DSim are significantly faster than
simulation. For benchmarks where the fraction of time spent
transferring data is higher (e.g., those from the HyperProto-
Bench suite), the speedup provided by NEX is lower since
NEX (like gem5) simulates DMA requests and responses.

JPEG

JPEG-2device
s

JPEG-4device
s

JPEG-8device
s

VTA-4device
s

VTA-8device
s

VTA-m
atm

ul

VTA-yolo-v3-tin
y

VTA-re
snet18

VTA-re
snet34

VTA-re
snet50

Protoacc-
bench0

Protoacc-
bench1

Protoacc-
bench2

Protoacc-
bench3

Protoacc-
bench4

Protoacc-
bench5

100

101

102

103

104

105

Ti
m

e 
(s

)

74
x

65
x

81
x

93
x

61
4x

87
9x

65
x

51
4x

43
3x 27
9x 27

4x 6x
86

x
6x

8x 8x
6x

gem5+RTL NEX+DSim

Figure 3. Total time required to complete simulation for different
benchmarks that run on the three hardware accelerators. The data
label above each yellow bar represents the corresponding relative
speedup of NEX+DSim compared to gem5+RTL.

Based on these results, we conclude that developers can
indeed use NEX+DSim to interactively simulate the full
hardware-software stack and quickly iterate over design
changes in both the software and the accelerator. We provide
a detailed breakdown of NEX+DSim’s speedup in §6.5.

6.4 Development Use Cases
As mentioned in §1, NEX+DSim can enable a more interactive
way to develop hardware-accelerated software and to
co-design hardware-software stacks. We now present different
use cases corresponding to three distinct development stages.

Using NEX for early-stage development of hardware-
accelerated stacks. When optimizing full-stack systems,
developers first identify bottlenecks and evaluate the expected
performance gains of using an accelerator to address these
performance issues before committing to a full implementa-
tion. We show how NEX’s CompressT and JumpT features
described in §3.3 can help.

For this illustration, we reuse the multi-threaded JPEG appli-
cation with 8 JPEG decoders reported above, but extend it with
more time-consuming post-processing in software, to have
a clear bottleneck. We call this code matrix_filter_2d(). From
here on, all performance numbers correspond to NEX+DSim
simulation. Initially, the application takes 3,233ms.

Once profiling reveals matrix_filter_2d() to be a bottleneck,
developers ask themselves whether speeding up this post-
processing with a custom accelerator would improve end-to-
end execution time. So they wrap matrix_filter_2d() in a Com-
pressT block, then simulate again with NEX. For example, a

10× CompressT acceleration results in the application’s execu-
tion time reducing to 667ms, i.e., a 4.8× overall acceleration.

However, a 10× acceleration of matrix_filter_2d() might be
unrealistic, due to memory access latency. To figure out a more
realistic speedup, developers can instrument their application
and wrap this instrumentation in JumpT, to make it zero-
overhead in virtual time. For example, in a JumpT block, the
developer adds code that runs matrix_filter_2d(), times its ex-
ecution, computes how many memory accesses it makes, mul-
tiplies them by a constant 1ns access time, and then computes
the ratio of matrix_filter_2d()’s execution time to its estimated
memory-access time. It then passes this value to the subsequent
CompressT block, in which matrix_filter_2d() is executed
again. Running the instrumented application in NEX+DSim
obtains an end-to-end execution time that accounts for the
dynamically computed acceleration of matrix_filter_2d()
but excludes all the instrumentation overhead. In our JPEG
example, the new latency is 855ms, meaning that a tighter,
more realistic upper bound on overall acceleration is 3.78×.

If this overall speedup is worth the effort, developers can
begin sketching a design for the envisioned custom accelerator.
Note that such what-if analyses would be difficult to derive
analytically because of the complex interactions between the
application’s multiple threads and the accelerator.

Sketching accelerator design with DSim. Developers doing
software-hardware co-design can use LPNs in DSim as
sketches of the microarchitecture of the desired accelerator.
They can then write a separate functional model (unrelated
to the microarchitecture) and compose the two using the
method described in §4.3. Loose coupling between the
performance and functionality track allows developers to
explore functionally equivalent microarchitectural designs
by merely adjusting the LPN.

Using NEX+DSim interactively. If developers are consider-
ing using accelerator Φ, and they have an LPN and functional
simulator for it, then they can use NEX+DSim to simulate
Φ-accelerated stacks interactively. In so doing, they can inter-
actively answer questions like Q1: What would the end-to-end
latency be if I used Φ? Q2: How much would Φ speed up
my software? Q3: What would the performance bottlenecks
in my system be once I integrated Φ into it? and Q4: Can I
further optimize Φ’s design for my use case? We use the VTA
accelerator as an example of how developers could do this.

We assume an initial design of VTA that is attached via
PCIe to the host CPU, with DMAs served by the host’s LLC.
The application of interest is Resnet50 inference.

For Q1 and Q2, NEX+DSim can show within seconds that
Resnet50 inference takes 677ms when using VTA but takes
537ms when running exclusively on the CPU. Thus, the current
design of VTA actually increases application latency by 26%.

To identify bottlenecks (Q3) and optimize the accelerator
design (Q4), developers can begin by testing different intercon-
nect latencies. For instance, reducing the interconnect latency
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from 400ns to 100ns reduces inference latency from 677ms to
292ms. Further reducing the latency to 4ns (i.e., putting VTA
on-chip) leads to an overall latency of 162ms, and switching the
DMA serving from the LLC to an L2 cache gives 146ms. Since
each of these simulations takes less than a minute, NEX+DSim
enables such design exploration to be done interactively.

A similar process applies to Protoacc. A naive design
of Protoacc is slower than a Xeon CPU. Simulations with
NEX+DSim—each of which takes approximately a minute—
reveal that Protoacc only delivers significant speedups if mem-
ory access latency is less than 4ns. Developers can observe that
message creation and content filling is costly, and typically
leads to stalls in Protoacc. Finally, they can realize that Pro-
toacc is underutilized unless it is used by multiple CPU cores.

Today’s batch-mode development and evaluation of
hardware-accelerated stacks is reminiscent of programming
with punch cards in the 1960s. We believe that NEX+DSim
makes modern, interactive development a reality.

6.5 Breakdown of Accuracy and Simulation Speed
Improvements

To better understand how each component of NEX+DSim
contributes to the reported results, we simulate the three
accelerators using two additional setups: gem5+DSim and
NEX+RTL. For each composite simulator, we measure the
overall simulation time and the error in simulated time relative
to the baseline. We present the results in Fig. 4 and Fig. 5.

Breaking down speed improvements. Fig. 4 illustrates the
speedup achieved by each simulator configuration relative to
the gem5+RTL baseline. We make the following observations:

First, replacing gem5 with NEX’s native execution alone
yields substantial speedups, ranging from 2× to 157×. This can
be observed by comparing the gem5+RTL histograms to the
NEX+RTL ones. The simulation speedup arises because CPUs
performs significant computation even in accelerated systems.

Second, DSim alone (i.e., gem5+DSim) delivers notable
speedups when the accelerators are more loaded than the
CPU, such as the matmul benchmark, for which it delivers a
2× speedup in simulation time.

Finally, NEX and DSim work best when used together, of-
fering speedups of up to 92× compared to the best-performing
individual component. Full-stack simulation speedup is gated
on the slowest component-level simulator, so the simulation
of both the CPUs and accelerators must be fast.

Breaking down simulation error. We now similarly break
down the simulation error of NEX+DSim, and show it in Fig. 5.

Most of the simulation error comes from NEX’s native
execution: in most cases, the simulators that use NEX have
the highest error. This simulation error is multifaceted. While
part of it is due to NEX itself, a significant portion actually
stems from our baseline: although we did our best to configure

gem5 to match the Xeon platform where NEX runs natively,
we observe differences between the two on some benchmarks.

To evaluate this, we re-run the JPEG, VTA and Protoacc
benchmarks, but this time with all calls to accelerators
removed. We execute them on both NEX and gem5, and
then compare the reported simulated time to the true native
execution (without NEX) on our Xeon server. Compared to this
ground truth, NEX incurs an average error of 7.0% across all
benchmarks, with a maximum error of 13.7%—this is good ac-
curacy, as it stays below 20%. In contrast, gem5 exhibits larger
error, with an average of 13% and a maximum of 37%. Dis-
cussions with practitioners indicate that these numbers align
with their own experience, but they continue using gem5 for
full-stack simulation because of the lack of viable alternatives.

6.6 Impact of NEX Configuration
We now evaluate how two configuration parameters in
NEX—the epoch duration and the number of physical cores
used—impact the simulation speed and accuracy. In addition,
we also evaluate the simulation accuracy of NEX when the
complementary scheduling policy atop EBS is enabled.

Impact of the epoch duration. We use the OpenMP-based
NAS Parallel Benchmarks class W [26]. We vary the thread
count from 1 to 16 to analyze how increased inter-thread
communication affects NEX accuracy. We test four different
epoch durations: 500ns, 1µs, 2µs, and 4µs. Sufficient cores are
provisioned for both NEX and bare-metal. Table 4 shows the
results for accuracy and slowdown relative to actual execution.

Metric Threads
Epoch duration

500 ns 1𝜇s 2𝜇s 4𝜇s

Slowdown
1 30.0× 14.6× 8.0× 4.5×
8 37.6× 18.9× 10.8× 6.5×

16 42.8× 20.7× 11.9× 7.7×

Avg error
1 4.0% 2.9% 3.3% 3.7%
8 14.0% 9.5% 20.9% 40.7%

16 31.5% 9.8% 13.1% 34.5%

Table 4. Average error and slowdown (relative to non-simulated
execution) of NEX on OpenMP benchmarks.

For each thread count, the slowdown decreases as the epoch
duration increases. This is expected, because a larger epoch
duration reduces the scheduling overhead.

The results for simulation error are more nuanced. The
main source of error (relative to non-simulated execution)
comes from the EBS scheduling policy in NEX, because
EBS executes threads within an epoch asynchronously. When
thread synchronization (e.g., locks and unlocks) spans epoch
boundaries, this leads to inaccuracies. Shorter epochs should
reduce the cost of cross-epoch synchronizations, hence
reducing the error.

11



JPEG
JPEG-2devices

JPEG-4devices
JPEG-8devices

VTA-4devices
VTA-8devices

VTA-matmul

VTA-yolo-v3-tiny
VTA-resnet18

VTA-resnet34
VTA-resnet50

Protoacc-bench0

Protoacc-bench1

Protoacc-bench2

Protoacc-bench3

Protoacc-bench4

Protoacc-bench5
100

101

102

103

104

105

Ti
m

e 
(s

) 1.
1x 1.
1x 1.
0x

1.
1x 1.

0x 1.
0x

2.
1x 1.

0x

1.
1x 1.
1x 1.

6x

1.
0x

1.
1x

0.
9x

1.
0x 1.
0x 1.

0x5.
0x

8.
8x

13
.4

x

20
.0

x

99
.9

x

15
6.

8x 1.
8x

23
.5

x

38
.9

x

23
.3

x

3.
0x

6.
6x

77
.8

x

5.
6x

8.
0x 7.
1x 5.

2x

74
x

65
x

81
x

93
x

61
4x

87
9x

65
x

51
4x

43
3x 27
9x 27

4x 6x

86
x

6x

8x 8x

6x

gem5+RTL gem5+DSim NEX+RTL NEX+DSim

Figure 4. Absolute simulation time in seconds and speedup of different simulator combinations over the gem5+RTL baseline.
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Figure 5. Error in simulated time relative to the gem5+RTL baseline.

And indeed, error reduces when the epoch duration de-
creases from 4 to 1µs. However, reducing further from 1µs
to 500ns increases the error. One hypothesis is that 500ns ap-
proaches the ballpark of how long it takes for the microarchitec-
ture to get back to full throughput after a flush (pipeline, queues,
ROB, caches, TLB, branch prediction state, etc.), so a good
fraction of the epoch is wasted, thus increasing inaccuracy.

In general, increasing the epoch duration reduces simula-
tion slowdown at the cost of increasing the error. Based on our
experiments, a 1µs epoch duration seems to be a sweet-spot for
this trade-off. Nevertheless, we envision developers picking the
epoch duration based on the maximum error they can tolerate.

Impact of underprovisioning physical cores for NEX. To
assess what happens when there are fewer physical cores than
simulated virtual cores, we employ the same OpenMP bench-
mark suite with 16 threads and a 1µs epoch, but we configure
NEX to use only 1 or 4 physical cores. NEX still simulates 16
virtual cores, as per EBS (§3.3). With 1 core, we observe a 69×
slowdown and 14.7% average error (37.0% max). With 4 cores,
the simulation slowdown is reduced to 36×, and error is re-
duced to 12.7% on average (26.0% max). In conclusion, under-
provisioning physical cores reduces NEX performance and ac-
curacy relative to a 1-to-1 physical-virtual core configuration.

Accuracy of the complementary scheduling policy in NEX.
We evaluate simulation accuracy with the complementary
scheduling policy atop EBS (§3.3) in comparison to native

Linux (i.e., with the default scheduler). The impact of the
scheduling policy is accentuated when there are more runnable
threads than cores, so we run the OpenMP benchmark suite
with oversubscribed cores (using the taskset tool) in four
configurations: 2 threads on 1 core, 4 threads on 2 cores,
8 threads on 4 cores, and 16 threads on 4 cores. For each
scenario, the number of virtual cores in NEX is the same as
that of physical cores in the baseline non-simulated Linux.

Except for the SP and LU benchmarks, NEX with
complementary scheduling policy incurs an average error of
9.1% (maximum 22.3%). For SP and LU, however, NEX does
significantly worse: avg 33%/max 55% and avg 51%/max
128%, respectively. This is because there are nuances of
the native Linux scheduler that are not modeled in NEX’s
complementary policy. Further details appear in §A.1.

6.7 Impact of Supporting Interrupts in NEX+DSim
To support interrupts, NEX+DSim uses hybrid synchroniza-
tion modes (§3.1). We evaluate the hybrid synchronization
with two periodic synchronization intervals: every 10µs and
every 1µs, effectively supporting interrupt frequencies up to
0.1MHz and 1MHz, respectively. We execute the OpenMP
benchmark suite across all accelerators. With hybrid synchro-
nization, NEX+DSim experiences an average slowdown of
1.6× (2.1× max) at a 10µs interval and 2.1× (2.9× max) at a
1µs interval. In conclusion, the orders-of-magnitude speedup
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offered by NEX+DSim over the baseline simulator still holds
even with hybrid synchronization.

6.8 Going Beyond End-to-End Execution Latency
Although in our evaluation we used NEX+DSim primarily to
compute execution latency, it can also measure a wide range of
other performance metrics, including throughput, tail latency,
and fairness. This versatility stems from two main factors:
First, NEX+DSim executes the entire unmodified software
stack, including the application, system libraries, OS, and
code that programs the accelerators. As a result, software
performance anomalies—such as synchronization issues,
garbage collection pauses, or queue buildup—that affect,
e.g., tail latency are faithfully reproduced within NEX+DSim.
Second, DSim’s underlying LPN abstraction accurately
models critical microarchitectural behaviors such as queuing,
stalls, and backpressure within accelerators and interconnects.
Consequently, DSim can capture subtle accelerator perfor-
mance behaviors, such as latency spikes caused by bursts of
requests leading to hardware-level contention. For instance,
in the same benchmarks we run with Protoacc, we measured
the latency of all completed serialization tasks and computed
the 90th-percentile latency. When comparing NEX+DSim
to gem5+RTL, the average relative error is 20.0%, except for
Protoacc-bench1. In Protoacc-bench1, the 90th-percentile
latency is below 10 µs; in this range, variance of the real CPU
on which NEX runs, and discrepancies between gem5 and the
real CPU lead to disproportionately large relative errors.

7 Discussion

Minimal modification of drivers. Using NEX requires mod-
ifications to accelerator drivers, however, these changes are
minimal and limited to the mapping of MMIO regions or task
buffers. Furthermore, it is common for developers to imple-
ment a separate driver or make slight adjustments to existing
ones for simulation purposes, because the interface for inter-
acting with a real device and a simulated device is different.

Reducing simulation slowdown. NEX introduces a 10–20×
slowdown, even though applications run natively on the
CPUs. This baseline overhead is mainly due to frequent kernel
crossings for scheduling and per-epoch thread management.
SlipStream helps NEX users avoid this overhead when it is not
necessary. Using user-space threading libraries could reduce
kernel-crossing overhead, but this would require special
linking or application changes, and it complicates control over
microarchitectural effects in simulation. Such exploration is
left for future work.

Memory modeling limitations. NEX has several limitations
in its current memory modeling. First, it cannot capture
memory contention between the host CPU and accelerators. As
discussed in §3.1, accurately modeling such contention would
require tracing all CPU memory accesses, which would make

native execution impractical. Nonetheless, NEX does simulate
contention among multiple accelerators. Second, NEX does
not yet account for the cost of virtual memory address trans-
lation for accelerator DMAs, which involves I/O TLBs. This
is not a fundamental restriction, as adding I/O TLB modeling
simply requires extending the current memory model in NEX—
we leave this for future work. For now, NEX can still simulate
DMAs that use virtual addresses correctly, but it ignores the
translation overhead they would incur in real hardware.

Accelerator baselines. Our evaluation was limited to open-
source RTL-based accelerator models. Analytical or gem5
models instead of RTL could speed up full-stack simulation
baselines. However, significant reductions in simulation time
by NEX+DSim are still to be expected, as seen in §6.5.

8 Related Work

CPU simulators. Simulators such as Graphite [42], ZSim [50],
Sniper [11], and WWT [49] were developed to explore CPU
microarchitectures, offering various speed and accuracy
trade-offs for modeling multiple processors and processor
core-level details. Although NEX does not simulate CPU
architectures, it shares several key ideas with them.

Like WWT [49], NEX runs instructions natively on the CPU
and simulates the missing real components. WWT simulates
a shared-memory multicore system on a non-shared-memory
host by executing instructions natively and trapping only on
cache misses, which it then simulates. NEX adopts the same
principle, but for accelerator simulation.

Like ZSim [50] and Graphite [42], NEX relaxes timing
synchronization among simulated components, albeit at
the granularity of system-level interactions rather than
individual CPU cores. For instance, in ZSim, each core runs
independently for a short quantum (bounding phase), and then
all conflicts are resolved collectively, with each core’s timing
adjusted during a subsequent weaving phase. NEX’s epoch-
based approach is similar. Extending ZSim’s methodology
to include both CPUs and accelerators could provide more
accurate modeling of memory contention, which NEX does
not address. However, this approach requires tracing all CPU
memory accesses, which incurs significant overhead (see §7).
Full-stack software simulators. Simulators like gem5 [9],
Simics [38], and Cotson [7] extend CPU simulators to model
complete computing environments, including processors,
memory, and peripheral devices. Gem5 has become a standard
in academia and industry due to its flexibility, robustness, and
accuracy. To avoid simulating uninteresting code, practitioners
often fast-forward execution to a certain point—for example,
using QEMU [43] or gem5’s KVM CPU [9]—then checkpoint
the system state and switch to a detailed gem5 model to
simulate only the code of interest. We employed such
fast-forwarding in our gem5 evaluation with its KVM CPU.
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Furthermore, several projects have integrated accelerator
models into full-system simulators to enable hardware–
software co-simulation and full-stack evaluation. Approaches
such as gem5-RTL [34] and SimBricks [33] rely on RTL-based
simulations, while others, like gem5-Aladdin [52] and gem5-
SystemC [39], use high-level accelerator models derived from
High-Level Synthesis C code or SystemC abstractions.

Despite gem5 being the bottleneck in such full-stack
simulators, existing approaches are also constrained by how
they model accelerators: RTL simulations are slow, and
High-Level Synthesis (HLS) mostly shines only for specific
families of accelerators, such as signal processing accelerators.
In contrast, DSim offers greater flexibility: it can be used for
high-level design sketches, providing developers with full
control over the accelerator architecture (unlike HLS), as
well as being capable of replacing an RTL simulator while
remaining both accurate and fast.

Simulation frameworks that only run the software stack as
an accelerator task generator are not full-stack simulators. For
example, GPGPU-Sim [17] and Direct Code Execution [58]
allow software to run natively with simulated accelerators
(or networks) by intercepting GPU or POSIX APIs. However,
they ignore host CPU timing, host–accelerator parallelism,
and synchronization, ensuring only functional correctness of
the full stack, not proper modeling of performance behavior.

Full-stack FPGA simulators. FPGA-based simulators like
FireSim[32] require the RTL source code to be available for
the entire SoC (including the CPU). This precludes many use
cases, such as engineers at Google and Amazon designing
accelerators around ARM-based CPUs for which they do not
have the RTL. Several works [56, 57] synthesize a model of the
CPU, but their performance-simulation fidelity is poor. The
accelerator’s RTL is also typically not accessible to software
developers of the full stack. Finally, FPGA-based approaches
involve lengthy compilation and synthesis time—as designs
increase and/or include multiple accelerators, they require
larger or multiple FPGAs, increasing the simulation cost in
both time and resources. FireSim reports ∼110× slowdown
for single-node simulation—NEX has similar slowdown, even
though it is fully software-based, and thus cheaper.

Analytical Models. We regard analytical models [2, 14, 54] as
complementary to NEX+DSim, much as they complement tra-
ditional full-stack simulators. They are especially valuable in
the early stages of accelerator design—for example, to assess
whether a workload is compute- or memory-bound and to esti-
mate potential speedups before investing in RTL. They are also
useful when the bottleneck does not shift within the system,
i.e., when system performance is determined by a single bot-
tleneck (like memory accesses), and this bottleneck is highly
predictable. However, to our knowledge, no analytical model
is simultaneously general, full-stack, and sufficiently detailed.

The complexity of modern software stacks, memory
hierarchies, and interconnects exceeds the ability of analytical

models to accurately answer many real-world performance
questions. For example, it is not feasible for a hyperscaler
to estimate the end-to-end benefits of an accelerator across
thousands of applications using only analytical models.
Similarly, questions about the system as a whole—such as
the impact of co-located workloads on tail latency—cannot
be answered without modeling the full interaction of the
applications, system libraries, OS kernel, CPU, memory hi-
erarchy, interconnects, and accelerators. This is why full-stack
simulators like NEX+DSim have become indispensable tools
for the design and evaluation of hardware-accelerated systems.
Functionality and performance decoupling. Decoupling
performance and functionality into two tracks for simulation is
found in various CPU/GPU simulators [32, 42, 50, 56, 57, 62].
DSim adopts similar principles but focuses on accelerators.
Whereas prior work typically limits itself to a single archi-
tecture with tailored fine-grained coupling between the two
tracks, DSim loosely couples the two tracks and unifies how
they interact across diverse accelerator designs, making this
approach more broadly applicable.
Performance models for accelerators. Besides full-stack
simulation of both the host and the accelerators, developers
might want to evaluate the accelerators’ performance
in isolation, for which analytical models are commonly
employed. For example, prior work [22, 44, 46] has introduced
performance models designed to quickly evaluate accelerators
running specific kernels, such as loop nests, sparse tensor
operations, or SmartNIC processing. However, these models
are highly domain-specific, limiting their broader applicability.
Besides analytical models, DAM [65] introduced a simulator
framework to model dataflow systems using constructs similar
to those employed by the LPNs used in DSim. However, a key
distinction between LPNs and DAM is that LPNs decouple
performance from functionality, making them considerably
faster for performance simulation.

9 Conclusion
We presented a new performance simulation framework for
hardware-accelerated stacks that is orders-of-magnitude
faster than the state of the art, yet still accurate. The design is
motivated by the question: If a full-stack simulator offered only
the visibility needed by systems developers, how much faster
could it be? The resulting quantitative improvement has a
qualitative impact on the development of hardware-accelerated
stacks: what used to be a batch-mode development workflow
can now be made truly interactive.
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A Appendix

A.1 Complementary Scheduling on Top of EBS
As described in §3.3, NEX has a complementary scheduling
policy on top of EBS to emulate the behavior of a conventional
scheduler when there are more runnable threads than virtual
cores.

When selecting threads to run in each epoch, the policy
prioritizes threads that remain runnable across epochs, up to
a typical scheduling slice (e.g., 20ms). After this slice expires,
such threads are deprioritized in favor of runnable threads
that haven’t been recently scheduled. This mirrors fairness
mechanisms in typical schedulers, such as Linux’s Completely
Fair Scheduler (CFS) [59].

Like CFS, the complementary policy maintains a per-task
virtual runtime (vruntime) and prioritizes tasks with smaller
vruntime (i.e., those that have run less). However, the policy
simplifies CFS in several ways. For example, when a task
resumes from a non-runnable state (e.g., sleep), it resets
the task’s vruntime to a fixed baseline rather than aligning
it with the current minimum. CFS determines each task’s
target run length from the number of runnable threads, but
the complementary policy in NEX always sets the run length
to the minimum threshold set in CFS. In addition, because
the NEX policy is implemented on top of EBS, both the
book-keeping of vruntime and the timing of updates differ
from CFS’s implementation. This can lead to differences in
observed application performance.

A concrete example arises when running OpenMP’s SP and
LU benchmarks (introduced in §6.6) in scenarios where physi-
cal cores are oversubed. Both benchmarks are barrier-intensive
and require frequent global synchronization, which makes
them highly sensitive to scheduling decisions. In such cases,
differences between Linux CFS and NEX’s complementary
policy are magnified, increasing NEX’s simulation error. On
native Linux (no simulation), oversubscription induces sub-
stantial slowdowns relative to a one-thread-per-core baseline:
LU is 780× on average (2,227× max) slower, and SP is 14×
on average (25× max) slower than in a non-oversubscribed
scenario. In NEX, the complementary policy causes the
slowdowns to diverge from Linux: LU is 1,230× slower on
average (2,930× max), whereas SP is 9× slower on average
(11× max). This reduces the accuracy of simulated time.

In our design, each physical CPU managed by EBS is
assigned a fixed number of credits per epoch, determined by
the ratio of simulated virtual cores to available physical cores.
For example, if EBS uses 4 physical cores to simulate 16
virtual cores, each physical CPU receives 4 credits per epoch,
effectively simulating 4 virtual cores. Each thread execution
consumes one credit, and a CPU cannot run additional threads
once its credits are exhausted.

The complementary policy tracks credit usage to achieve
load balancing across virtual cores. However, it avoids work

stealing between physical CPUs, as such cross-core migration
would break simulation correctness. Instead, it performs load
balancing by deciding, at the start of each epoch, on which CPU
queue to enqueue each thread. This enables fine-grained bal-
ancing while preserving correctness. Both the load-balancing
frequency and the window size for resetting CPU credit usage
statistics are configurable. Our load-balancing mechanism is
simplified compared to the implementation of conventional
schedulers such as Linux. As a result, this too might introduce
differences in observed application performance.

This complementary scheduling policy should be enabled
when simulating oversubscribed systems, to improve accuracy,
as evaluated in §6.6.

A.2 Adapters for Integration with gem5
As mentioned in §5, DSim includes an adapter to integrate
with gem5 over SimBricks connections. NEX also has an
adapter to connect to RTL simulators.

DSim adapter. To support different accelerator semantics, we
implement the DSim adapter as an abstract base class. This
class wraps SimBricks library calls and defines five callbacks
that DSim models can override: SetupIntro, RegRead,
RegWrite, ExecuteEvent, and DmaComplete. RegRead and
RegWrite handle MMIO operations sent from gem5 that
access accelerator control registers. ExecuteEvent signals to
run events previously scheduled by DSim, and DmaComplete
signals DSim DMA completion and provides the data in
case of a DMA read. Apart from callbacks, the base class
also provides methods to send DMA requests to gem5 via
IssueDma, and interrupts through MsiXIssue, MsiIssue, and
IntXIssue. The adapter operates in an event-driven manner,
which is consistent with DSim’s design.

As discussed in §4.3, DSim requires access to host memory
via zero-cost DMAs. For integration with gem5, we implement
these DMAs using a second, unsynchronized SimBricks com-
munication channel, where the events or messages exchanged
are not timestamped. On the gem5 side, incoming requests
from this connection are handled using functional memory
accesses [35], a special class of memory accesses typically
used for debugging that do not consume any simulated cycles.
This setup allows DSim to access gem5-simulated memory
(including caches) without advancing virtual time.

NEX adapter. This adapter allows NEX to communicate
with accelerators over a SimBricks connection. It provides
primitives including AdvanceUntil, which NEX can use to
advance the accelerator to a specific timestamp. The NEX
adapter supports managing multiple accelerators together with
multiple threads. When connecting to DSim, the NEX adapter
also spawns threads that handle zero-cost DMAs from DSim.
Additionally, it forwards interrupts from accelerators to the
NEX runtime.
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To reduce unnecessary synchronization messages among
simulators and avoid wasted simulation cycles when accel-
erator simulators are idle, we extend the SimBricks protocol
with a new FastForward primitive. This primitive allows NEX
to force-update the clock of an inactive accelerator simulator.
It applies to both RTL simulators and DSim. Moreover, DSim
can proactively request a force-update when it detects that the
LPN is idle (e.g., after completing all tasks). For this purpose,
DSim raises a simulated MSI-X interrupt via a dedicated

interrupt vector, signaling NEX that the simulator is idle and
can be fast-forwarded.

NEX can integrate with DSim also without using this
adapter, by running DSim in the same process and invoking
AdvanceUntil directly. We used this tight integration for appli-
cations with a single accelerator in §6. It achieves an average
speedup of 1.6× over communication via the SimBricks chan-
nel, with a maximum speedup of 1.9× in the VTA matmul
benchmark, where most execution time is spent on the acceler-
ator and DMAs.
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