
Performance Interfaces for Hardware Accelerators
Jiacheng Ma, Rishabh Iyer, Sahand Kashani, Mahyar Emami, Thomas Bourgeat, George Candea

EPFL, Switzerland

Abstract
Designing and building a system that reaps the performance

benefits of hardware accelerators is challenging, because ac-
celerators provide little concrete visibility into their expected
performance. Developers must invest many person-months
into benchmarking to determine if their system would indeed
benefit from using a particular accelerator. This must be done
carefully, because accelerators can actually hurt performance
for some classes of inputs, even if they help for others [53].

We demonstrate that it is possible for hardware accelerators
to ship with performance interfaces that provide actionable
visibility into their performance, just like semantic interfaces
do for functionality. We propose an intermediate representa-
tion (IR) for accelerator performance that precisely captures
all performance-relevant details of the accelerator while ab-
stracting away all other information, including functionality.
We develop a toolchain (ltc) that, based on the proposed IR,
automatically produces human-readable performance inter-
faces that help developers make informed design decisions.
ltc can also automatically produce formal proofs of perfor-
mance properties of the accelerator, and can act as a fast per-
formance simulator for concrete workloads.

We evaluate our approach on accelerators used for deep
learning, serialization of RPC messages, JPEG image decod-
ing, genome sequence alignment, and on an RMT pipeline
used in programmable network switches. We demonstrate that
the performance IR provides an accurate and complete repre-
sentation of performance behavior, and we describe a variety
of use cases for ltc and the resulting performance interfaces.

The code for ltc is open-source and freely available at [68].

1 Introduction
From datacenters to hand-held devices, modern systems in-
creasingly rely on hardware accelerators to speed up a variety
of tasks, such as machine learning [4, 48, 49, 64], video pro-
cessing [28, 73], compression, encryption [17, 40], communi-
cation [29, 53], and even system infrastructure tasks [5, 32].

However, building a system that uses accelerators
correctly—i.e., that fully extracts their performance benefits—
remains a challenging task, because software engineers have
little to no visibility into an accelerator’s expected perfor-
mance behavior. Every accelerator bakes design choices into
silicon, such as specific throughput-vs-latency trade-offs [70]
or assumptions about the workload [53], and if the software
is a poor fit for these choices, acceleration will offer few ben-

efits or even make performance worse [55, 59, 60].
This lack of visibility into expected performance hampers

system developers in all three stages of system development:
design, implementation, and deployment.

First, during the design stage, what functionality (if any) to
offload, and which accelerators to use, is not obvious. Con-
sider the offloading of (parts of) an RPC stack to an acceler-
ator, where the candidates are RPC serializers/deserializers
like ProtoAcc [53] and Optimus Prime [70], or one of several
SmartNICs. Software engineers need to know what latency
and throughput they can expect from each candidate accel-
erator, given their code and workload. Then they can decide
which one offers the best price–performance ratio, before in-
vesting in thousands of new chips and refactoring the RPC
stack. To answer these questions today, one needs to purchase
every candidate accelerator, port the code, and benchmark
them together—performance depends not only on the acceler-
ator but also on the code and workload. For example, Optimus
Prime is best suited for small data objects (≤300B), while Pro-
toAcc is best suited for larger data objects (≥4KB) [53], but
this does not transpire at all from vendors’ datasheets. Blindly
offloading to any accelerator is not an option either, because
this can end up degrading system performance. For instance,
for workloads comprising long strings, ProtoAcc can perform
worse than a regular Xeon server, because the accelerator is
bottlenecked by memory-intensive operations [53].

Second, in the implementation stage, software engineers
want to know how they can best optimize their code for the
chosen accelerator. Ideally, tools like compilers should an-
swer such questions quickly and automatically, but compilers
too are hampered by the lack of visibility into accelerator per-
formance. For instance, the TVM compiler [15]—a widely
used compiler for deep learning models—takes several hours
to optimize code for a target accelerator [16, 58]. This is be-
cause the compiler cannot figure out quickly and accurately
what latency can be expected when running a specific se-
quence of instructions on the accelerator. So it generates mul-
tiple variants of the code and profiles them on the accelerator
itself (or on slower cycle-accurate simulators [7] when the ac-
celerator is not available) to pick the optimal one. This makes
optimizing code for accelerators challenging [16, 58], given
the large space of candidate code sequences, the fact that pro-
viding an accelerator for each compilation run is costly, and
that engineering teams often optimize for the next generation
of accelerators even before the hardware is available.

Third, when deploying a system, engineers often need guar-

Appears in the 18th USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2024

antees on performance properties. Consider an autonomous-
vehicle driving system that integrates accelerators for real-
time image decoding, object detection, and object recognition.
To guarantee safe navigation in all operating conditions, engi-
neers must be able to precisely know, for example, the upper
bound on image decoding latency. There exists no good way
to “verify” the performance of third-party accelerators today.
The state of the art is blackbox testing, which is rarely suffi-
cient, so system designers typically rely on heuristics and ac-
cumulated wisdom [35]. Given that accelerators are expected
to become ubiquitous [63, 79], this status quo must change.

We argue that hardware accelerators should come with stan-
dardized performance interfaces [42, 43, 45] that summarize
performance behavior just like semantic interfaces summarize
functionality. Software engineers routinely use semantic in-
terfaces such as code documentation or header files to quickly
find answers to questions like what a system call does, or
which library is best suited for their requirements, or how in-
corporating a library will affect their system’s functionality as
a whole. Since an accelerator’s raison d’être is performance
(after all, its functionality could come just as well from soft-
ware running on a general-purpose processor), performance
interfaces are as integral to the correct use of accelerators as
are semantic interfaces. As explained above, using an acceler-
ator without a performance interface can fail to deliver on the
acceleration promise, or even make performance worse.

We propose a new abstraction for representing accelerator
performance that makes performance interfaces possible for
hardware accelerators; we call this abstraction a Latency Petri
Net (LPN). An LPN distills only the performance-relevant
details of a circuit and excludes all other information, such
as functionality. This distillation enables LPNs to serve as
a high-fidelity intermediate representation (IR) of a circuit
that is performance-equivalent: it takes the same inputs as the
original circuit, and its performance behavior matches that of
the original circuit. The semantics of the LPN circuit’s out-
puts, however, are different. We envision accelerator develop-
ers manually producing the LPN as part of their regular de-
sign process, and shipping it with the accelerator. We show
that doing so is both straightforward for accelerator develop-
ers (takes a few hours) and enables them to better understand
and debug their own designs. We also show that the LPN of an
accelerator need not disclose proprietary intellectual property.

We develop a toolchain (ltc) that, based on an accelera-
tor’s LPN, automatically produces performance interfaces in
the form of simple, human-readable Python programs. Soft-
ware engineers can use these interfaces to make informed de-
cisions at the system design stage without needing to write
code or to purchase the accelerator. ltc also provides a per-
formance simulator that helps engineers understand how to
optimize their code. Since the LPN distills only performance-
relevant details, ltc’s performance-only simulator is orders of
magnitude faster than its state-of-the-art cycle-accurate coun-
terparts that also simulate functionality. Finally, ltc also pro-

vides a formal verification tool that enables software engi-
neers to prove key performance properties before deploying
their systems (e.g., latency bounds for a specific but poten-
tially infinite class of workloads). Our toolchain prototype
works well for fixed-function ASICs (e.g., TPU [49] or the
accelerators on SoC-based SmartNICs [4, 9, 53]) and simple
programmable accelerators. General-purpose programmable
accelerators (e.g., GPGPUs) are left for future work.

We demonstrate ltc’s effectiveness on accelerators used for
deep learning, serialization of RPC messages, JPEG image de-
coding, genome sequence alignment, and on a Reconfigurable
Match Tables (RMT) pipeline used in programmable network
switches. We show that the LPN intermediate representation
can precisely capture the latency and throughput of various
accelerators. Even after LPN simplifications that trade accu-
racy for simulation performance, we show that the IR still has
an average performance-prediction error of only 1.7% across
all accelerators. We present a variety of use cases for the re-
sulting performance interfaces and LPNs, including: enabling
informed decision-making during the system design stage
without requiring elaborate benchmarking; cycle-level perfor-
mance simulation that is up to 7821× faster than state-of-the-
art cycle-accurate simulators, enabling ML compilers to gen-
erate code optimized for the accelerator in seconds instead of
hours; and using formal verification to gain confidence in an
accelerator’s performance before deploying it in production.

The rest of this paper is organized as follows: We provide
an overview of our proposed solution (§2), then define the
new LPN abstraction (§3) and describe the ltc toolchain (§4).
We then evaluate ltc experimentally (§5), discuss further
ideas (§6), present related work (§7), and conclude (§8).

2 Design Overview
To help software engineers reason precisely about accelerator
performance, we introduce the Latency Petri Net (LPN) in-
termediate representation: an abstraction of the accelerator’s
implementation that is performance-equivalent, i.e., its per-
formance behavior (but not functional output) matches that of
the original circuit. We then propose a workflow that uses the
LPN to answer key questions about accelerator performance
at the system design, implementation, and deployment stage
via an extensible toolchain that we call ltc.

The LPN is inspired by classic Petri nets [69], a class of
graphs used for the description and analysis of concurrent sys-
tems and processes. They are used in various domains, includ-
ing the design and verification of digital asynchronous cir-
cuits. We define the LPN in §3, and Fig. 2 shows an example.

Petri nets are a good starting point for the LPN abstraction,
because the key challenge in reasoning about hardware perfor-
mance is not reasoning about the individual components but
rather about the end-to-end performance that emerges when
these components (e.g., multiple pipeline stages) operate to-
gether, in parallel. Petri nets were designed to model concur-

2

Tr
an
sf
or
m
at
io
n

performance interface
(executable Python)

performance simulator
(executable C++)

verification condition
(Z3 SMT)

Accelerator
(e.g., Verilog RTL)

Latency Petri Net
(intermediate repr)

Distillation

other tools

Figure 1: Proposed two-phase workflow: Hardware engineers distill
their accelerator design into an LPN IR, and tools transform auto-
matically this IR into the forms desired by accelerator users.

rent systems, and they can precisely capture hardware’s inher-
ent parallel and asynchronous execution.

Using a Petri net-like representation also ensures that the
LPN is easy for accelerator developers to produce. This is
because, when generating an LPN, accelerator developers do
not need to reason about the impact of parallel execution on
performance, rather they only need to (abstractly) represent
the individual components and their local interactions. The
ltc toolchain takes the final step to fill in the gaps and turn the
LPN into forms that can be consumed by humans.

Fig. 1 illustrates our proposed workflow, consisting of two
stages that produce and consume the LPN IR, respectively.
The first stage (distillation) involves manually translating the
accelerator’s design into its corresponding LPN (we describe
this in §3.3). We propose that distillation be performed by ac-
celerator developers as part of their regular design process, but
one could also imagine tools that translate Register-Transfer
Level (RTL) designs into LPNs. Since the definitive clock
frequency of the circuit is decided in the post-RTL synthe-
sis stage, the LPN abstraction represents execution latency in
terms of cycles (i.e., an RTL-level metric), not wall-clock time.
The latter is easily calculated once the frequency is known.

The second stage of the workflow (transformation) auto-
matically processes an accelerator’s LPN into actionable in-
formation about accelerator performance. The ltc toolchain
consists of several tools: lpn2pi summarizes the performance
of the accelerator into human-readable, executable Python
programs that enable software engineers to make informed
development decisions without purchasing the accelerator or
porting their code to it. lpn2sim produces an executable sim-
ulator of the LPN that developers and tools can use for fast
performance simulation while optimizing their code. lpn2smt
translates the LPN together with a user-provided performance
property into a verification condition and passes it to the Z3
constraint solver [22] for a proof or refutation of the property.

This two-staged workflow—distilling the accelerator de-
sign into a performance IR and then transforming the IR into
answers to specific questions about performance—provides

Fetch
Instr

BufInstr
size = 8

Bufoper…

Rmem
size=1

Rcompute
size=1

Mem

Compute

…

𝑃!"#$"

𝑇%

𝑃&'()

𝑇*

𝑇+

𝑇,

𝑇-

𝑃%

𝑃%. 𝑃*

𝑃*.

𝑃+

𝑃+.

𝑃,
4	4	

4	

𝛿 = 20	

𝛿 = 1	

𝛿 = 1	 𝛿0! 	

𝛿0" 	

Fetch unit
Mem unit

Compute unit

Bufoper

𝑤1"0!

Figure 2: Example hardware pipeline (top) and its LPN (bottom).
This is a simplified version of the deep-learning accelerator in §5.

flexibility and customizability. Since the LPN is a universal
and accurate representation of the accelerator’s performance,
it can be transformed into answers to arbitrary questions about
the accelerator’s performance. We envision the set of tools in
ltc expanding over time, to address other questions one might
ask about an accelerator’s performance.

3 The Latency Petri Net Abstraction
We now define the LPN abstraction, first at a high level (§3.1)
and then more precisely (§3.2); a complete formal definition
is beyond the scope of this paper. We then describe step-by-
step how to distill an accelerator design into its corresponding
LPN (§3.3). Finally, we discuss the use of LPNs to model
components surrounding accelerators, such as memory and
interconnects (§3.4).

3.1 LPN Overview
To illustrate the LPN concept, we use the simple hardware
pipeline shown in Fig. 2. It consists of a fetch unit that brings
instructions into an instruction buffer, followed by an in-order
dispatch to a memory and a compute unit. The memory unit
fetches the operands for compute instructions from memory
into an operands buffer. The memory and compute units op-
erate in parallel, i.e., the memory unit can fetch operands for
a future compute instruction while the compute unit is still
processing the current instruction. Each unit operates on one
instruction at a time, stored in each unit’s local register (Rmem
respectively Rcompute) until the unit finishes processing it.

The memory and compute units have variable latencies
dmem and dcomp, respectively, that take into account the in-

3

struction type and when the operand was last accessed. For
simplicity of presentation, we fix the fetch unit’s latency to
20 cycles (fetches 4 instructions at a time), set the instruction
buffer’s maximum size to 8, and let the operands buffer have
infinite capacity, unlike in a real accelerator.

Reasoning about the latency of a sequence of instructions is
challenging, even for such a simple pipeline, due to the fetch,
memory, and compute units operating in parallel. Parallel
execution can both hide latencies (e.g., loads that bring in
the operands for future compute instructions may complete
before the current compute instruction) and introduce stalls
(e.g., in the fetch unit due to back pressure when the memory
and compute units drain the instruction buffer too slowly).

The bottom half of Fig. 2 illustrates the LPN for this sim-
ple pipeline. The LPN is a directed graph with two kinds of
vertices: places (circles) and transitions (rectangles). Adja-
cent vertices in the LPN must be of different kinds, i.e., edges
in the graph can only connect places to transitions and vice-
versa. Each place in the LPN contains tokens (solid black
dots) that collectively represent the state of the circuit, and
tokens are stored and consumed in FIFO order.

An LPN models how data flows through a circuit by en-
abling transitions. Each transition has a guard (not shown)
that determines whether the transition is enabled or not, a de-
lay (δ) that specifies the duration of the transition in cycles,
and a producer function (not shown) that generates new to-
kens. Once a transition is enabled, after the number of cycles
indicated by the delay, it commits, i.e., atomically consumes
input tokens and produces output tokens. We define each of
these operations precisely in the next section.

In Fig. 2, we show the correspondence between the circuit
blocks and the subgraphs of the LPN. For some of the LPN
details, such as the transition delays, one needs to consult the
RTL of the accelerator (not shown). The LPN at the bottom
is an abstract representation of a circuit that is performance-
equivalent to the one at the top: (1) it operates on the same
inputs, using a function (not shown) that converts instructions
to tokens in the special place Pstart ; and (2) given any input,
the number of cycles it takes the LPN to deposit the last token
in Pdone corresponds to the number of cycles the upper circuit
takes to produce its output. However, the LPN’s output tokens
are meaningless other than indicating completion.

3.2 LPN Definition
In essence, an LPN models a system of queues connected by
logic units that consume tokens originating from multiple in-
put queues and generate tokens for designated output queues.
The LPN is a directed dataflow graph in which places Pi rep-
resent the queues, and transitions Tj represent the logic units.
Edges directed from places to a transition are the transition’s
input edges, while those directed from the transition to places
are its output edges. We equip the LPN with a timestamping
machinery CLK to denote when each token in the system was
produced—this is a key ingredient for modeling performance.

An LPN state S = ((s1, . . . ,sn), t) is a tuple consisting of a
collection s1, . . . ,sn of sequences si representing the in-flight
tokens corresponding to places P1, . . . ,Pn, and one global
non-negative number t, the current value of CLK. A token
k = (p, ts) is composed of a map k.p of key-value pairs and
a timestamp. Each key in k.p is the name of a property of k.
Each token has a type, determined by the set of properties (but
not values) that tokens of that type have. All tokens in a partic-
ular place have the same type. The timestamp k.ts denotes the
CLK value when token k was produced. By construction, the
timestamp k.ts of any token in a reachable state S is k.ts≤ S.ts.
The tokens in a place are always consumed in FIFO order,
which is why s1, . . . ,sn are sequences and not mere sets.

A transition T = (γ,δ,π) is a tuple of three functions: a
guard γ, a delay δ, and a producer function π. The guard de-
cides when T is ready to execute: T.γ reads (without con-
suming) a subset of the tokens present in T ’s input places
and returns NotReady if the transition cannot execute at this
time. If it can, then the guard returns Enabled(w1, ...,wk) with
weights wi. To execute, the transition locks the first w1 free
tokens from its 1st input place, the first w2 free tokens from
its 2nd input place, and so on. The guard must guarantee that
∀i,wi is less than or equal to the number of free (not locked)
tokens already present in the transition’s ith input place.

When a guard T.γ switches from NotReady to Enabled, thus
enabling T , the transition does not immediately consume the
tokens but rather locks them for T.δ cycles. The lock means
that no other transition is allowed to consume those tokens.
At the end of the delay T.δ, the transition commits: the locked
tokens are atomically removed from T ’s input places, and the
tokens produced by T.π are pushed to the output places, with
the current CLK (commit time) as their timestamp. Both the
delay T.δ and the producer T.π are arbitrary functions of all
the input tokens that the transition promises to consume.

To avoid race conditions when two transitions share an
input or output place, we require that the two transitions never
be simultaneously enabled. The value of a guard T.γ is not
allowed to change between the moment it switches to Enabled
and the moment when T.δ has elapsed (and T commits).

LPN Semantics. Given an initial LPN state S0 =
((s1, . . . ,sn),0) with all the tokens in s1, . . . ,sn having a times-
tamp equal to 0, we define the semantics of the LPN starting
from S0 as the potentially infinite sequence of states induc-
tively defined by ((s1, . . . ,sn), t)→ ((s′1, . . . ,s

′
n), t

′).
The next state of an LPN is obtained by applying the effects

of all the transitions that are enabled at CLK = t and known to
be ready to commit at CLK = t ′. For a transition Ti to belong
to this group, it must be that the guard Ti.γ returned Enabled at
time ≤ t, its input tokens locked in the corresponding places
were produced before Ti started (i.e., the highest timestamp of
those tokens is tsmax = t ′−Ti.δ), and the earliest time when Ti
can commit is t ′. All transitions known to be ready to commit
at t ′ commit as a group, and they advance the LPN from
((s1, . . . ,sn), t) to ((s′1, . . . ,s

′
n), t

′). When no more transitions

4

can ever commit, the LPN has reached its terminal state.
In an LPN, it is possible that Ti.δ = 0. If a commit

at t ′ enables such a 0-delay transition, Ti will also com-
mit at t ′, even if this was not previously apparent, i.e.,
Ti was not previously “known” to be ready to commit
at t ′. Thus, after the first commit, the LPN transitions
((s1, . . . ,sn), t)→ ((s′1, . . . ,s

′
n), t

′), and subsequently it transi-
tions ((s′1, . . . ,s

′
n), t

′)→ ((s′′1 , . . . ,s
′′
n), t

′), i.e., there are multi-
ple states with the same timestamp. The process repeats until
no more transitions can commit at t ′.

LPNs are reminiscent of several extensions of Petri nets [46,
69, 86], mixing the notion of timestamp and information-
carrying tokens with enforced FIFO ordering between tokens.
With an LPN, we can accommodate the different modeling
needs of hardware accelerators, while keeping the underly-
ing models formal and machine-analyzable. We designed the
LPN to provide a favorable trade-off between compactness,
analyzability, expressivity, and ease of manipulation for our
different uses and tools. We chose the name “latency Petri
net” to acknowledge the inspiration we drew from Petri nets,
without implying a theoretical equivalence.

3.3 Distillation: From RTL to LPN
We now describe how a hardware engineer can represent the
performance of an accelerator using an LPN.

Distilling an accelerator’s register-transfer level (RTL) rep-
resentation into its corresponding LPN is an element-wise,
structural conversion of the RTL: FIFO buffers in the RTL be-
come LPN places, and RTL compute elements become LPN
transitions. Transitions can operate in parallel (if enabled at
the same time), so the engineer can produce the performance-
equivalent representation by analyzing in isolation the latency
of each stage of the accelerator pipeline. The LPN then glues
back together this stage-by-stage performance decomposition.

RTL-to-LPN distillation is a five-step process; we describe
each step in reference to the example in Fig. 2.

Step 1 involves listing the places and transitions that map di-
rectly to elements in the RTL: places P1,P2,P3,P4 correspond
to the four buffers/registers, transitions T1 to T5 correspond
to the three units that consume/produce from/to those buffers
plus the two copy actions of instructions to the registers Rmem
and Rcompute. The latter two are not explicit computations in
the block diagram but are units in the RTL source code.

Step 2 involves defining the guard functions and the corre-
sponding weights. For many transitions, becoming Enabled
simply requires the presence of a specific number of tokens
in an input place; their guards do not look at the properties of
those tokens (e.g., T4.γ and T5.γ). Occasionally, guards may
depend on the values of token properties: T2.γ (respectively
T3.γ) will be Enabled if and only if the first free token in P1
has a value corresponding to a memory (respectively com-
pute) instruction, because instructions are dispatched in order.

Most weights returned by the guards are constants (e.g.,
wT1P1 = 4 because the fetch unit fetches 4 instructions at a

time, and wP1T2 = wP1T3 = 1 because both registers store 1 in-
struction at a time). Default weights of 1 are not shown in
Fig. 2. Occasionally, weights may depend on the values of to-
ken properties: wP4T5 determines the number of operands tran-
sition T5 reads, and it is a function of the value of the property
of the token in P3 that specifies the type of instruction. In both
cases, the weights are intuitive for accelerator developers to
define, because they directly correspond to an architectural
quantity: the rate of consumption of tokens in the dataflow.
This also illustrates why weights need to be computable based
on tokens from all of a transition’s input places.

Step 3 involves defining the delay and producer functions
for each transition. The delay typically comes straight from
the RTL. The producer function produces tokens with just
those property values that are strictly necessary for the LPN
to accurately model performance—performance-irrelevant
should be discarded.

Step 4 involves modeling backpressure by adding capac-
ity constraints to each place in the LPN. Take for example
the Mem unit: we add an extra “capacity place” (P2b) with a
fixed initial number of “capacity tokens”, corresponding to
the capacity C of the buffer in question (1 token for P2); this
is a classic Petri net pattern [46]. The capacity place is con-
nected to the transitions incident on the original place (T2 and
T4), but in reverse, to form a loop. We adjust T4’s producer
function to also produce 1 capacity token into the capacity
place P2b, and T2’s guard to require that there be at least 1 ca-
pacity token in P2b to enable T2. This way, when T2 first com-
mits and consumes the initial token in P2b, it cannot commit
again until T4 has committed and deposited a capacity token
in P2b. This models the Mem unit backpressure: no new in-
struction will be copied into Rmem until the previous mem-
ory instruction has finished processing. The same pattern is
applied, for instance, to the P1 place representing the instruc-
tion buffer (Bufinstr), except that there are two consumers for
Bufinstr and the capacity is C = 8, thus 8 initial tokens in P1b.

Finally, step 5 involves adding start and done places (Pstart
and Pdone), and placing the initial tokens. The hardware engi-
neer then provides a “tokens from input” function Ψ to trans-
late the accelerator’s input to the LPN tokens placed in Pstart .
A stream of input data (e.g., an image) can be split into task
units (e.g., individual blocks), and each task becomes a token
that is placed inside Pstart . Depending on the accelerator’s
semantics, a task token could also be an instruction, a short
DNA sequence, etc. When the processing of a task completes,
a “done token” kdone should be produced into Pdone.

Constructing LPNs is a natural fit for accelerator develop-
ment workflows and a materialization of what hardware engi-
neers already have in mind, i.e., a more detailed architectural
diagram annotated with latency expressions. Compared, for
instance, to building a simulator, producing an LPN is easier,
because the accelerator functionality is abstracted away. ltc
provides a Python library with built-in types for places, tran-
sitions, edges, etc. that engineers can use to write the LPN.

5

We asked a hardware engineer to produce an LPN for
the Menshen RMT pipeline used in programmable network
switches [82]. After taking 3 days to understand the RTL de-
sign, he produced the corresponding LPN (which we evalu-
ate in §5) in less than 3 hours. This suggests that the manual
distillation step is indeed straightforward for someone who
understands the accelerator’s design. The same engineer also
mentioned that writing the LPN actually helped to better un-
derstand the performance behavior of the circuit.

Finally, in most cases, LPNs do not leak much proprietary
information about the accelerators. Except for the latency
details, an LPN reveals no more information than the high-
level architectural diagrams, which are often made public
anyway. No implementation details appear in the LPN.

3.4 Memory, Caches, and Interconnects
Accelerators are often part of a larger system, and their per-
formance is influenced by the components surrounding them,
such as memory, caches, and interconnects. LPNs can be used
to model these components as well. However, they provide
fewer benefits over other kinds of performance models than
they do for accelerators.

First, LPNs can be constructed even without a reference
RTL implementation, by speculatively modeling the internals
of a hardware component based, for instance, on documen-
tation and online posts. We built an LPN for a sophisticated
PCIe interconnect based on documentation alone, and we de-
scribe this example in §5.

Second, modeling complex memory hierarchies is chal-
lenging, because semantics are tightly intertwined with per-
formance: the latency of a cache access depends on which
entries are present in the cache or not, and knowing this re-
quires tracking the specific contents of the cache, which in
turn requires modeling the semantics of the cache in more
detail than for most accelerators. This is an example where
the ability of an LPN to abstract away functionality is limited,
and thus its advantage over, say, a cycle-accurate simulator is
reduced. One could model the state of the entire cache with a
single token, and each cache line would be an individual prop-
erty of that token. This LPN, though, would likely be more
complex than what the ltc toolchain was designed for.

Nevertheless, an LPN can still abstract away some seman-
tic details of the memory hierarchy and be productively used,
for instance, to model and reason about the parallelism within
the memory subsystem. If we took the RTL of a cache and dis-
tilled it into an LPN by following the steps discussed in §3.3,
we could model the cache’s internal logic (without taking into
account cache state) and simulate it with lpn2sim. This could
help reveal that a particular cache design can only handle 1
cache hit every 2 cycles, whereas a better design could handle
a cache hit every cycle, through pipelining. The pipeline de-
sign does influence cache performance, even if not as much as
replacement strategy and associativity configuration do. An
LPN can help fine-tune the pipeline design.

4 Transforming the LPN
The LPN is an abstraction that is performance-equivalent to
the accelerator; nevertheless, it is not easy to read for those
unfamiliar with the accelerator’s implementation details. As
a result, it is not directly useful to software developers who
want to use the accelerator in their systems. We now describe
how the ltc toolchain bridges this hardware–software gap by
transforming the LPN into representations that software devel-
opers can use in the different stages of system development.

The ltc toolchain currently consists of three main tools:
(1) lpn2pi, which transforms the LPN into human-readable
performance interfaces in the form of executable Python pro-
grams, which are meant to be read as much as executed;
(2) lpn2sim, which merges the LPN with a simulator skele-
ton to produce an executable simulator that both develop-
ers and tools can use for fast performance simulation; and
(3) lpn2smt, which translates the LPN together with a user-
provided performance property into verification conditions
that can be proven or refuted using an SMT solver, to provide
performance guarantees before the system is deployed. ltc
also provides other, simpler tools that we do not describe here,
such as lpnviz, which produces a visualization of the LPN that
hardware developers can use to better understand and debug
the accelerator. We envision both hardware and software en-
gineers contributing more such tools to ltc over time.

While the lpn2sim simulator (just like the RTL) oper-
ates on concrete inputs, both lpn2pi and lpn2smt produce
outputs—performance interfaces and verification conditions,
respectively—that describe performance for an abstract, sym-
bolic input. Since the space of all possible inputs to an acceler-
ator is large, often infinite, producing complete performance
interfaces or verification conditions is intractable for most
LPNs, due to the path explosion problem [11]. We circumvent
this challenge by introducing the notion of input classes for
LPNs, which partition a given input space into input sets for
which, individually, it is feasible to produce complete perfor-
mance interfaces and verification conditions. We now describe
how input classes partition an input space (§4.1), and then de-
scribe lpn2pi (§4.2), lpn2sim (§4.3), and lpn2smt (§4.4).

4.1 Input Classes for lpn2pi and lpn2smt

To use the lpn2pi and lpn2smt tools, one must first constrain
the input space to the one of interest. For example, for the
JPEG Decoder, the user might include all images up to a given
maximum size (number of pixels × pixel depth in bits) and
exclude all others. This input space is then partitioned by
an ltc tool into input classes, with lpn2pi and lpn2smt then
solving the problem for each class independently. This ltc tool
employs symbolic execution [13] to partition the input space.

Intuitively, an input class is a group of inputs for which sim-
ulating the LPN will cause (1) each transition in the LPN to
commit exactly the same number of times for all executions
corresponding to inputs in that class; and (2) the nth commit

6

of each transition will consume and produce the same num-
ber of tokens in all executions, for all values of n. (An “execu-
tion” is a complete simulation of the LPN from CLK=0 until
it deposits the last kdone token into Pdone.) For example, if ex-
ecuting the LPN with an input from a class causes transition
T to commit twice during the execution, consuming 3 tokens
for the 1st commit and 4 tokens for the 2nd commit, then ex-
ecuting the LPN with any other input from that class must
also cause T to commit twice and to consume 3 tokens for
the 1st commit and 4 tokens for the 2nd commit. The tokens
consumed and produced in different executions must have
the same type (§3.2), but can have different property values.
Commits of different transitions can be interleaved arbitrar-
ily in different executions for inputs in a class; the only thing
that matters is the commit and token counts. §A.1 in the Ap-
pendix contains a formal definition of input classes.

Input classes are defined such that all inputs in any given
class impose the same pattern on the trace resulting from the
simulation of the LPN. The tools leverage this commonality
to do their analysis once per pattern (which could subsume
many inputs). Even though input classes are not defined based
on human-understandable semantics of the accelerator’s input,
they often do correspond to input types that are intuitive for
users. For example, for the Protoacc LPN (§5), all messages
of a given format constitute one input class. For the JPEG
decoder LPN (§5), all images of the same size form a separate
input class.

As mentioned, ltc includes a preprocessing tool for auto-
matically partitioning the user-specified input space into in-
put classes. It symbolically executes the LPN in a special way
and partitions the input space into sets. One input class can
possibly span multiple sets, but a set never contains inputs
from more than one input class. Then, by operating on each
set in isolation, lpn2pi and lpn2smt can avoid path explosion
and are trivially parallelizable by input set. Please see A.2 in
the Appendix for details of how input classes are generated.

4.2 lpn2pi
The lpn2pi tool transforms the LPN into human-readable per-
formance interfaces represented as executable Python pro-
grams, in the spirit of [42, 43]. The performance interface
takes the same inputs as the accelerator (e.g., a stream of
network packets, multiple RPC messages, a long DNA se-
quence) and returns the start-to-end latency (i.e., total execu-
tion cycles) it would take the accelerator to process that input.
The performance interface describes the start-to-end latency
not with concrete numbers but with formulae, as introduced
in [44] but expressed in terms of properties k.p of initial to-
kens k in the accelerator’s LPN. The performance interface
returns a single formula per input class. We show examples
of lpn2pi-extracted performance interfaces in Figs. 4 - 7.

lpn2pi does not aim for fully precise performance
interfaces—while the LPN has suitable constructs to precisely
represent the accelerator’s asynchrony and parallelism, reflect-

ing these in a precise, closed-form, human-readable formula
is typically intractable. Instead, lpn2pi approximates the accel-
erator’s start-to-end latency, trading precision for human read-
ability and closed-form expressions. Approximation turns out
to be sufficient, because we expect performance interfaces to
be used mostly during the system design stage, when software
engineers are interested in coarser-grained descriptions of per-
formance. In §5, we show that, while approximate, lpn2pi-
extracted interfaces nevertheless enable informed decisions
at the design stage, such as choosing the accelerator configu-
ration that fits best a particular workload profile.

The following three assumptions underlie the approxima-
tion made by lpn2pi: (1) The size of the input is large enough
so that the accelerator’s pipeline is almost always full, i.e.,
the time spent filling and draining the pipeline is a negligible
fraction of the overall start-to-end latency; (2) For all inputs
in any given input class, the accelerator has the same bottle-
neck, i.e., the stage in the accelerator’s pipeline (or transition
in the LPN) that incurs the longest delay is the same for all
inputs in that class; and (3) The bottleneck in the accelerator
pipeline is stable, i.e., it does not shift from one pipeline stage
to another during the processing of an input.

We define the effective delay εT of a transition T in an ex-
ecution of an LPN as the product N × gT of the number of
times N the transition commits in that execution and the av-
erage duration between consecutive commits of that transi-
tion (called average commit gap gT). The transition with the
largest effective delay is deemed to be the bottleneck. Based
on the three assumptions above, lpn2pi approximates the start-
to-end latency to be the effective delay εT of the bottleneck
transition (i.e., of the bottleneck stage of the pipeline). Recall
that the definition of an input class (§4.1) requires the num-
ber of times each transition commits in an execution to be the
same for all inputs in that class. So, given an input class and a
transition T , N is a constant for all inputs in that class. How-
ever, gT is a symbolic expression parameterized by properties
of the initial tokens, so εT is also a symbolic expression.

Determining εT for each transition comes down to deter-
mining the respective gT . Note that gT does not necessarily
equal T.δ, because a transition may be stalled for an arbitrary
number of cycles (due to its input places not having enough
tokens) or it could be non-blocking and become enabled again
before it commits (i.e., commit multiple times in parallel).

Accurately estimating the average commit gap gT is chal-
lenging in LPNs with loops. In a loop-free LPN, gT for all
transitions is just the maximum of all transition delays. But
with loops, this simple method is no longer accurate. Consider
a simple loop P0 → T1 → P1 → T2 → P0, with initially a single
token in P0 and none in P1. Every time T1 commits, it subse-
quently has to wait for T2 to commit before it can be enabled
again (and T2 also has to wait for T1), so the average commit
gap for both T1 and T2 is the sum of the delays of T1 and T2.

To approximate the gTi
of all transitions Ti in a loop, we

define the loop delay ∆ and a parallel factor FTi for each tran-

7

sition Ti in the loop—we estimate gTi
as ∆/FTi . Here is why:

Consider a simple loop that has only one place with M initial
tokens. ∆ is the time it takes for the M initial tokens to com-
plete a full iteration around the loop, with all transitions com-
mitting at least once. Recall that transitions are non-blocking,
in the sense that a transition Ti, once enabled, could become
enabled again before it commits, if the configuration of free
tokens in its input places changes such that Ti.γ is satisfied
once again. As a result, there can be multiple instances of the
same transition enabled at the same time. By FTi we denote
the maximum number of instances of Ti that can be simul-
taneously enabled. Increasing levels of concurrency propor-
tionally reduce the gap between successive commits, so we
estimate the average commit gap for Ti as gTi

= ∆/FTi .
lpn2pi starts out by setting gT =T.δ for each transition T in

the LPN; if T.δ is a general function on input tokens, gT is
the corresponding symbolic expression. Then, for each loop
in the LPN, lpn2pi computes ∆ and the FTi factors, and then
it recomputes gTi

= max(gTi
, ∆/FTi) for each Ti in that loop.

Once lpn2pi has treated each loop once, we say that it has
completed one iteration of the process. Dependencies among
loops and the order in which the loops are treated can influ-
ence the estimated gTi

values, so lpn2pi continues iterating in
order to improve the estimates. The current version of lpn2pi
stops after a fixed number of iterations that is configurable
(default 10). In the next version, lpn2pi will automatically stop
when the gTi

values stabilize, i.e., do not change from one iter-
ation to the next by more than a configurable threshold. Com-
paring changes at the level of symbolic expressions (which
is what some gT values are) is fundamentally hard, so lpn2pi
will instead compare concrete values of these expressions, ob-
tained by randomly sampling the input class and computing
the corresponding concrete values of the expressions. Once it-
erative estimation is complete, lpn2pi derives the start-to-end
latency formula as the maximum of the εT expressions (i.e.,
maxTi(N×gTi

). lpn2pi then uses sympy [61] to simplify the for-
mula to obtain an expression that is easier for humans to read.

lpn2pi repeats the process described in the previous para-
graph for each input class, after which it emits the correspond-
ing interface program in Python, in the form seen in Figs. 4 - 7.

Please refer to A.3 in the Appendix for more details on the
computation of εT , ∆, FTi and on the underlying assumptions.

4.3 lpn2sim

For a given LPN, the lpn2sim tool produces a bespoke cycle-
level performance simulator that can be used by both engi-
neers and tools. As we show in §5.3, the LPN’s power of ab-
straction enables lpn2sim-generated simulators to simulate
performance orders-of-magnitude faster than state-of-the-art
cycle-accurate simulators.

lpn2sim’s simulator is event-driven and works as follows:
In step 0⃝, it sets the value of CLK to zero, and then repeatedly
performs the following two steps to make forward progress.
In step 1⃝, the simulator finds all transitions that can commit

at the current CLK value. If more than one can commit, the
one with the smallest ID is committed first. The simulator
repeats this step until no transition can commit at the current
CLK value. In step 2⃝, the simulator finds the next earliest
timestamp at which a transition can commit. If no transition
can commit, the simulation terminates. Else, the simulator
updates the CLK to that timestamp and goes back to step 1⃝.

lpn2sim automatically translates the LPN (described by
hardware engineers using our Python API) to an equivalent
C++ program. It first emits equivalent place and transition
objects in C++, and then translates individual delay, guard,
and output functions. To make such automatic translation of
delay, guard, and output functions feasible, our Python API
only allows arithmetic operations and conditionals within
these functions; this proved sufficient for all the accelerators
we evaluated. lpn2sim then combines the translated LPN code
with a simulator skeleton we wrote in C++ and compiles to
an executable.

4.4 lpn2smt

The lpn2smt tool is used to formally reason about performance
properties of an accelerator based on its LPN. It has three in-
puts: the target LPN, the input space ϒ, and a query Φ. The
ϒ parameter is the subspace of inputs that are of interest to
the user. lpn2smt currently supports queries related to latency
bounds of two kinds: what is the upper (lower) bound on la-
tency, or can you prove/disprove expression φ(x) involving
latency x. An example of the latter, which we use in our eval-
uation, is φ(x) : |(E − x)/x|< 0.2, where E is an expression
taken from an (approximate) performance interface. This asks
for a formal proof that E is within 20% of the true latency
for all possible inputs and, if not, asks for a counter-example.
lpn2smt can be extended to support other kinds of queries too.

lpn2smt first partitions ϒ into input classes (§4.1), then de-
rives based on the LPN a precise SMT expression Λi for the
start-to-end latency for each input class i. Then it pieces to-
gether a global latency expression for the entire input sub-
space ϒ as Λϒ = ite(C1,Λ1, ite(C2,Λ2, ite(...))) using the if-
then-else ite operator supported by SMT solvers like Z3 [22]
and the inputs constraints Ci that define the corresponding
input classes. Note that this is a precise expression, not like
lpn2pi’s approximations meant to be human-readable.

For the first kind of query, lpn2smt passes Λϒ to the SMT
solver’s optimizer and asks for a formally verified upper
(lower) bound on Λϒ. For the second kind of query, lpn2smt
passes φ(Λϒ) to the SMT solver and returns either a formal
confirmation that it is true or a counter-example.

The SMT expression Λi for input class i is constructed as
follows: Let Ni be the number of transition commits in an
execution from this class; by the definition in §4.1, there is
a unique Ni for each input class i. lpn2smt instantiates Ni
symbolic timestamps CLK1, CLK2, ... corresponding to when
the transitions committed—the start-to-end latency will be
max j=1..Ni{CLK j}. To compute this expression, lpn2smt in-

8

stantiates for each commit j the consumed tokens, and places
them in the corresponding input places. For each such token k,
lpn2smt sets k.p and k.ts to symbolic values constrained to re-
flect the relationship to CLK j. Recall that the number of tokens
produced/consumed by a transition is the same for all inputs
in a class (§4.1). Then lpn2smt uses the “tokens from input”
function Ψ (applied to a suitably constrained symbolic input
from this class) to obtain the initial tokens, and places them
in Pstart . It then uses the transitions’ producer functions to in-
stantiate the transition-produced tokens into the correspond-
ing places. For each initial and produced token k, lpn2smt con-
strains k.p and k.ts according to the function that produced it
and the respective T.δ and CLK j. Then, lpn2smt captures the
constraints resulting from the fact that every consumed token
must either be an initial token or one resulting from a commit.
The constraints that result are propagated to CLK1, CLK2, ...,
and finally lpn2smt computes Λi = max j=1..Ni{CLK j}.

In summary, the LPN is a generic IR that is performance-
equivalent to the accelerator circuit and can be transformed
by tools into higher level representations useful to software
engineers. In this section, we presented three of the tools in
the ltc toolchain: lpn2pi, lpn2sim, and lpn2smt. We envision
both hardware and software engineers contributing more such
tools to ltc, increasing its usefulness over time.

5 Evaluation
In this section, we evaluate ltc on several accelerators and
show that it answers the questions mentioned in §1. We
first describe our experimental setup (§5.1), then present
fine-grained results that shed light on detailed aspects of
LPNs (§5.2), and conclude with higher-level results (§5.3).

5.1 Experimental setup
We evaluate ltc on 5 accelerators (Table 1), each representative
of a particular class of accelerators. We require access to the
RTL, so the evaluation is limited to open-source accelerators.

Apache VTA (Versatile Tensor Architecture) [2] is a deep-
learning accelerator with a compiler stack based on TVM [15].
The accelerator incorporates tensor cores that perform vector
or matrix operations. The design includes parallel units for
compute, load and store operations, which decouples memory
accesses from the compute, to hide memory latencies [74].
VTA can be used to program arbitrary dataflows when exe-
cuting the deep-learning model. Certain high-level machine
learning operations can be implemented with different VTA
instruction sequences. Each instruction sequence exhibits dif-
ferent performance, and so TVM (VTA’s compiler) generates
multiple instruction sequences and selects the best performing
one. This process is called auto-tuning. Our evaluation uses
a workload consisting of 1,500 instruction sequences gener-
ated from auto-tuning ten 2d convolution tasks from ResNet-
18 [34], an 18-layer deep convolutional neural network com-

Accelerator Domain Workload LOC
VTA [2] Deep learning Autotune

ResNet-18 [34]
6,628 Chisel

Protoacc [53] RPC message
serialization

Hyperprotobench [31]
and microbenchmarks

3,197 Chisel

JPEG [80] Image
decoding

30K Flickr [51] and
30K Div2k [50]

7,003 Verilog

Darwin [20] Bioinformatics 10 DNA test
sequences [21]

1,535 Verilog

Menshen [82] Programmable
P4 switch

3 Verilog testbenches
(with up to 100 packets)

11,169 Verilog
+ 4,318 VHDL

Table 1: Open-source accelerators used for evaluating ltc.

monly used to measure auto-tune latency and inference speed.
Protoacc [53] is a hardware accelerator developed by

Google for protocol buffers [71] and integrated into a RISC-V
SoC. We only consider Protoacc’s serializer, which is the most
interesting part of Protoacc: multiple fields within a message
are serialized in parallel within the accelerator. Deserializa-
tion is sequential and thus less interesting. As in the evalua-
tion of the ProtoAcc paper [53], we use the Hyperprotobench
benchmark [31] and their microbenchmarks to measure seri-
alization performance of both large messages (>1MB) and
small messages (<1KB). While Protoacc’s standard testbench
includes a complex memory subsystem (with caches, DRAM,
and TLB), we are only interested here in the performance of
the accelerator itself, i.e., what a vendor would provide an
LPN for. Therefore, in the empirical measurements, we warm
up and overprovision the caches and TLB to prevent them
from disturbing the performance of the accelerator.

JPEG [80] is an image decoder core for FPGAs written
in Verilog. It supports various chroma, fixed and dynamic
Huffman tables, DQT tables for JPEG input streams, etc. Our
workload consists of the Flickr [51] and Div2k [50] datasets.
Each has 30K diverse images, and all images in the Div2k
dataset are high-resolution.

Darwin [20] is a GACT (DNA sequence) alignment accel-
erator. The accelerator has two main stages. The first stage
uses a systolic array to fill scores in a 2D score matrix, and
the second stage computes alignment actions at each step: in-
sertion, deletion, and match. For the workload, we use ten
pairs of test DNA sequences used by the Darwin authors [21].

Menshen [82] is a Reconfigurable Match Tables (RMT)
pipeline used in a programmable P4 network switch [12]:
incoming packets are processed by flowing through a pro-
grammable packet filter, 2 packet header parsers, 5 header
processing stages, and 4 header de-parsers. Menshen extends
the RMT architecture with isolation mechanisms to ensure
that multiple P4 programs running on the same switch do not
suffer from performance interference. It spatially partitions
its stateful resources (match-action table entries and stateful
memories) and uses per-packet configuration overlays for its
stateless resources (packet filter, header parsers, header pro-
cessing stages, and header de-parsers). As workloads, we use
Menshen’s two original device-level testbenches, plus an ad-
ditional testbench based on the original but extended to 100
packets. Menshen contains several closed-sourced IP blocks,

9

which restricts some of our experiments.
We ran all experiments on a 2-socket 48-core Intel Xeon

Gold 6248R processor with 376 GiB of memory, 1 thread per
core, running Ubuntu 20.04.4 LTS with the 5.15 Linux kernel.
For the speedup and accuracy baselines, we compare to Verila-
tor [81], the fastest open-source cycle-accurate RTL simulator
available today—it generates optimized C++ code from Ver-
ilog that is 200–1000× faster than interpreted simulators [81].
We use Verilator v5.010 for all accelerators except for VTA,
where we use v4.022, for compatibility reasons. All speedup
comparisons are single-threaded. Verilator v4.022 and v5.010
have negligible performance differences on a single thread.
We use the Clang-11.1.0 compiler. For the PCIe experiments,
we use an AMD Alveo U200 accelerator card connected with
a gen3 x16 PCIe interconnect to a host without DDIO.

We build the LPNs for the above accelerators by manually
inspecting the RTL source code. The LPNs use tokens to ab-
stractly represent the data of various formats and units that
flow through the real hardware. For example, input packets
in Menshen are turned into tokens with a property represent-
ing the type and length of a packet, each 8×8 image block
in JPEG is turned into a token with a property representing
the number of non-zero pixels after quantization, each instruc-
tion in VTA is turned into a token with properties represent-
ing different parts of the decoded instruction, and each field
in a message in Protoacc is turned into a token with proper-
ties representing the type of the field and field length. LPN
transitions represent the different hardware components that
operate in parallel, and LPN places represent the buffers.

5.2 Understanding LPNs in detail
We now provide a quantitative deep-dive into the LPN abstrac-
tion, and we also describe how hardware engineers can them-
selves use LPNs to better understand and debug their designs.

5.2.1 Accuracy and completeness of the LPN
As explained in §2, the LPN representation enables accelera-
tor developers to describe performance in terms that are fa-
miliar to them, and then rely on the ltc toolchain to translate
the LPN to representations palatable to software engineers.

Fig. 3 shows that using the LPN as an IR is justified: across
all benchmarks and all accelerators, the average latency pre-
diction error of the simulator generated by lpn2sim based on
the LPN is 1.7%. The maximum error never exceeds 10%. For
the LPN to be 100% accurate, it would need to retain almost
all the RTL-level details, which is unnecessary in practice.

This means that the LPN provides a performance IR that is
highly accurate and complete, i.e., it contains all the necessary
details to provide predictions that are close to reality. Tools
based on the LPN IR can therefore achieve high accuracy.

5.2.2 Representation efficiency
Besides accuracy and completeness, the utility of an LPN
also depends on its conciseness, ease of update, understand-

Maximum Average Minimum0.0

2.5

5.0

7.5

10.0

Re
la

tiv
e

Er
ro

r (
%

) 9.3
5

8.6
4

8.4
4

0.0
6

4.0

1.4
9 1.9

6 2.3
9

0.0
5

2.8
3

0.0
5

0.0
4

0.0
4

0.0
5

1.5

VTA JPEG Protoacc Darwin Menshen

Figure 3: Relative latency prediction errors of the LPN-based simu-
lation vs. Verilator cycle-accurate simulation.

ability by non-technical staff, and so on. As we will show in
Fig. 8, by incorporating only performance-related details and
nothing else, the LPN brings about orders-of-magnitude im-
provements in simulation time. This is one measure of rep-
resentation efficiency. In Table 2 we show the complexity of
the LPNs along different dimensions, which serves as another
measure of representation efficiency.

Accelerator LOC Number of ...
RTL LPN transitions places edges

VTA 6628 Chisel 506 12 22 41
JPEG 7003 Verilog 109 6 16 33
Protoacc 3197 Chisel 758 97 112 365
Darwin 1535 Verilog 214 2 4 6
Menshen 11169 Verilog 544 29 44 85

Table 2: Comparative complexity of LPN and RTL representations.

5.2.3 Hardware engineer effort to write LPNs
As already mentioned, we asked an accelerator developer with
several years of mixed academic and industry experience to
read §3 and write an LPN for Menshen, whose design he
had not seen before. He wrote the LPN without assistance,
and then tested its accuracy with the Menshen testbenches.
After understanding the RTL design, it took him less than 3
hours to write an accurate LPN. He estimated that a developer
who knew the design and did not need to go back and forth
between the RTL and the LPN would take less time.

The Menshen code base is quite substantial. This result
therefore strongly suggests that hardware engineers would
find it acceptable and practical to write LPNs for their accel-
erators, especially if they stand to gain (as we argue below).

5.2.4 Utility to SoC and accelerator developers
Besides being easy to write, we believe LPNs, accompanied
by the ltc toolchain, can improve the productivity of acceler-
ator designers. For example, finding the right configuration
(e.g., sizing the buffers in a programmable switch) is today
labor-intensive and error-prone. The wrong choices for buffer
sizes can affect the delicate internal balance of an accelerator
and lead to performance degradation due to unnecessary stalls.

10

We discovered the utility of lpn2smt in optimizing buffer
sizes while trying to prove an upper bound on the stall-to-
cycles ratio (≤ 0.4) for JPEG. In the default configuration,
due to an under-sized buffer in the output unit, the previous
unit was backpressured early. We had lpn2smt find a buffer
size that respects the desired stall-to-cycle ratio: we made
the buffer size symbolic and queried lpn2smt to optimize the
stall-to-cycles ratio. lpn2smt took 3 minutes to return 0.276 as
the optimal ratio and a concrete buffer size that satisfies that
ratio. Changing the buffer size (1 line of RTL) led to a 37%
performance improvement on the Div2k dataset [50]. Since
only some of the images have a stall-to-cycle ratio > 0.4, such
a nuanced performance bottleneck would be hard to find.

5.2.5 LPNs beyond accelerators
The performance of the interconnect and external memory
accesses affects overall performance when running accelera-
tors, so engineers may want to connect LPNs for accelerators
to models for the interconnect and memory, to understand
the overall system performance. LPNs are a natural fit for
modeling interconnects. We inferred hardware details from
PCIe documentations [66], then created an LPN for a recon-
figurable PCIe topology, including root complex and switches,
and connected it to the LPN for JPEG. With a fixed memory-
access latency model, the LPN-based system model achieves
on average 1.9% (maximum 5.1%) relative error compared
to the end-to-end latency measured with the real hardware
system (i.e., a JPEG decoder on an FPGA connected to the
host CPU via PCIe). The image set we evaluated on includes
40 images of varying sizes, and the per-image latency ranges
from 15 microseconds to 100 milliseconds.

5.3 Key results
In this section, we present high-level results that illustrate the
value of LPNs and ltc to accelerator developers and users.

5.3.1 Performance interfaces are human-friendly

This set of results illustrate how LPNs and ltc can answer
questions like “What latency/throughput can I expect from
this accelerator for my code?” and “Which of accelerators X
or Y will best accelerate my workload?”. For the latter, we
were unable to find two open-source accelerators that provide
identical functionality, and so we demonstrate this use case
using two configurations of the same accelerator.

Consider the JPEG performance interface in Fig. 4, pro-
duced by lpn2pi (as explained in §4.2, the variable names
come from the token property names). A quick read conveys
that the latency of decoding an image grows with the num-
ber of blocks in the image; the compression ratio, which is
inversely related to the number of non-zero elements in the
block, affects the latency as well. Developers can visually in-
fer the bounds on accelerator latency. To derive a latency in

seconds, one multiplies the cycles by the clock period. The
@perf_interface decorator adapts the input, based on the “to-
kens from input” function Ψ (§3.3), to make the token proper-
ties (e.g., num_blocks and avg_num_nonzero_perblock) avail-
able to the interface at the right level of abstraction.

1 freq = 75*10**6 # 75MHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_jpeg_decode(img):
5 x = 6*(img.avg_num_nonzero_perblock *3+6)
6 cycles = img.num_blocks*max(x,509)/4
7 return cycles*clk_period
8
9 @perf_interface

10 def tput_jpeg_decode(img):
11 # Images are processed one-by-one
12 # We provide throughput for RGB blocks instead
13 return img.num_blocks / latency_jpeg_decode(img)

Figure 4: Latency and throughput interfaces for the JPEG decoder.
Comments are manually added. The throughput interface is manually
constructed based on the latency interface.

If developers understand the parameters of their workloads,
they can directly look at the performance interface to reason
about the latency distribution for those workloads. Otherwise,
they can generate test cases and quickly run them with the
performance interface, which is executable Python code.

Next, consider the performance interface for Pro-
toacc (Fig. 5), which directly conveys the cost of serializing
different message types. The latency for serializing a series
of messages is just the sum of the latency of serializing in-
dividual messages. As mentioned earlier, lpn2pi extracts the
performance interface for each input class—in this case, in-
put classes correspond to Protoacc message types—and as-
sembles them together. The performance interface raises an
error if the input message is not part of the input classes for
which the performance interface was extracted. Due to space
limitations, we do not show throughput interfaces, as they are
straightforward to derive from the latency interface.

We use two configurations of Protoacc to demonstrate
how performance interfaces can help developers choose be-
tween accelerators, or between different configurations of
the same accelerator, by comparing their performance inter-
faces (Fig. 5). The first configuration is the original Protoacc,
and the second is a smaller configuration of Protoacc with the
number of parallel serialization pipelines reduced from six to
one. From the interface, if the message type is hpbench.m1,
we can infer that, if the total bytes are below 47KB, the origi-
nal Protoacc is faster. And once the total bytes exceed 47KB,
the alternative configuration is faster. This is because, when
the message size is below 47KB, the bottleneck is still in pro-
cessing the message—since the original Protoacc has more
pipelines to process the message in parallel, it is faster. Once
the message size exceeds 47KB, the bottleneck shifts to the
generation of the memory reads/writes, and the alternative
configuration is faster, because it has a higher frequency.

Finally, Fig. 6 shows the extracted performance interface
for Darwin, and Fig. 7 shows the performance interface for

11

1 freq = 1.8*10**9 # 1.8GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_protoacc_serialize(msgs):
5 cycles = 0
6 # Iterate over each message of a list of messages
7 for msg in msgs:
8 # hpbench.m* are Hyperprotobench msg formats
9 if msg.type == hpbench.m1:

10 cycles += max(1468, msg.total_bytes /16+310)
11 elif msg.type == hpbench.m2:
12 cycles += max(2172, msg.total_bytes /16+514)
13 elif msg.type == hpbench.m3:
14 ...
15 else:
16 raise NotImplementedError(
17 f"message type not supported"
18)
19 return cycles*clk_period

1 freq = 2*10**9 # 2GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_protoacc_alternative_config_serialize(msgs):
5 # Latency interface for another protoacc

configuration where the number of parallel
pipelines is reduced from 6 to 1.

6 cycles = 0
7 for msg in msgs:
8 if msg.type == hpbench.m1:
9 cycles += max(3609, msg.total_bytes /16+310)

10 elif msg.type == hpbench.m2:
11 cycles += max(4566, msg.total_bytes /16+514)
12 elif msg.type == hpbench.m3:
13 ...
14 else:
15 raise NotImplementedError(
16 f"message type not supported"
17)
18 return cycles*clk_period

Figure 5: Interfaces for default ProtoAcc (top) and an alternative
configuration of ProtoAcc (bottom). We speculate that the frequency
of the alternative ProtoAcc configuration could be 2GHz (instead of
1.8GHz at the top) because the design is simpler.

1 freq = 250*10**6 #250MHz
2 clk_period = 1/freq
3 num_pe = 4
4 @perf_interface
5 def latency_darwin_gact(dna_pairs):
6 cycles = (dna_pairs.ref_dna_length + num_pe + 2)*

dna_pairs.query_dna_length/num_pe
7 + num_pe + 2 + 3*dna_pairs.steps
8 return cycles*clk_period

Figure 6: Latency interface for Darwin GACT for DNA alignment.

1 freq = 1*10**9 # 1GHz
2 clk_period = 1/freq
3 @perf_interface
4 def latency_menshen(pkts):
5 if pkts.type == 0:
6 # length of the packets stream is 100
7 cycles = max(1320, pkts.sum_nr_words + 176)
8 else:
9 ...

10 return cycles*clk_period

Figure 7: Latency interface for Menshen.

Menshen. The interface for Menshen is extracted per packet-
stream with a fixed number of packets but of different sizes.
We do not show interfaces for VTA because (unlike the other
accelerators) it is a programmable domain-specific processor,
so it takes “programs” as input. VTA instruction sequences
contain thousands of instructions produced by compiling a
high-level program with TVM [15]. These performance inter-
faces are therefore program-dependent and long. We expect
developers to use other ltc tools instead of reading these.

5.3.2 Performance interfaces are accurate

We report in Table 3 the accuracy of the ltc-generated perfor-
mance interfaces for latency. As a baseline, we use the Verila-
tor cycle-accurate simulator to run the workloads on the accel-
erators’ RTL. We compare the prediction provided by the per-
formance interfaces to the values reported by Verilator. The
performance interface for Menshen is only evaluated using the
100-packet testbench; the other testbenches contain too few
packets to fill the pipeline, so lpn2pi’s assumptions don’t hold.
Of course, this does not affect the LPN’s accuracy (§5.2).

Prediction error
Accelerator Average Max

JPEG 7.04% 23.39%
Protoacc 2.40% 3.83%
Darwin 0.05% 0.06%
Menshen 9.43% 9.43%
VTA 19.49% 58.93%

Table 3: Prediction accuracy of extracted performance interfaces.

The average relative error is low (<20%) for all five ac-
celerators, despite performance interfaces being approximate.
They aim to capture the major factors that affect latency, not
predict precisely the latency, and (as discussed in §4.2) lpn2pi
introduces some inaccuracies.

The extracted performance interfaces for JPEG and VTA
have the largest maximum errors. As already explained, lpn2pi
does not capture the influence of bottleneck shifts on la-
tency (§4.2). In the JPEG decoder, the input is a stream of
image blocks. If one segment of blocks is highly compressed
and another is less compressed, the bottleneck for processing
segments of blocks will shift back and forth within the ac-
celerator. Similarly, in VTA, each of the parallel components
(fetch, load, compute, or store) can be the bottleneck during
different periods while processing the instructions.

In future work, we plan to extract a performance interface
for each phase of the input stream and add the latencies spent
in each phase to derive the final start-to-end latency.

5.3.3 LPN-based performance simulation is up to 3 or-
ders of magnitude faster than existing simulators

Another set of questions is “How do I generate code optimized
for accelerator X”, “How can I do that quickly, in compile-
and-run cycles typical of software development workflows”,
and “How can I evaluate my envisioned workload on an accel-
erator that isn’t available just yet?” These questions might be
relevant directly to developers, or to tools, such as the TVM
compiler for deep-learning models mentioned in §1. A com-
mon approach to answer such questions, when the real hard-
ware is not available, is to use cycle-accurate simulators.

lpn2sim provides substantial benefits, up to three orders
of magnitude. Fig. 8 shows lpn2sim’s speedup over Verila-
tor. All cycle-accurate simulators simulate both performance
and functionality, which is wasteful when only performance

12

questions are being asked. Speedups are more significant with
larger accelerators, because there is more functionality that
the underlying LPN abstracts away.

Maximum Average Minimum1

10

100

1000

10000

Sp
ee

du
p

78
20

.6x

46
5.9

x

44
.4x92

.6x

46
.1x

18
.0x

77
1.6

x

25
8.5

x

27
.0x

2.6
x

2.6
x

2.6
x

VTA JPEG Protoacc Darwin

Figure 8: Simulation speedup: LPN-based simulation vs Verilator.

Table 4 shows the absolute simulation times. We believe
that orders-of-magnitude changes in performance simulation
time, such as going from ∼2 hours to ∼20 seconds, can bring
about qualitative changes in how the tools are used.

Simulation time
Accelerator Cycle-accurate Verilator LPN-based lpn2sim

VTA 119 min 19 sec
JPEG 2159 min 38 min
Protoacc 25 sec 0.08 sec
Darwin 0.13 sec 0.05 sec

Table 4: Simulation time: LPN-based simulation vs. Verilator.

To get a feel for the impact of faster simulation time on
developer productivity, we benchmark the auto-tuning process
in the TVM compiler, which optimizes deep-learning models
for accelerator targets (§5.1). Auto-tuning can be done either
upon initial compilation, or be manually triggered whenever
there are changes to the model, to the hardware, or to its
configuration. We compare end-to-end compilation time when
TVM uses Verilator vs. lpn2sim. Fig. 9 shows the outcome for
the 10 auto-tune tasks in our workload (§5.1). As part of this
auto-tuning, TVM generates 1,500 sequences of instructions,
ranging from 62 to 159,947 instructions.

1 2 3 4 5 6 7 8 9 10
Task Number

10

100

1000

Ti
m

e
in

 se
co

nd
s

40
.9x

24
.8x

8.3
x

28
.7x 16

.2x
5.6

x

24
.1x 14

.3x 5.4
x

14
.0x

Compiler Verilator lpn2sim

Figure 9: End-to-end compilation time, including auto-tuning. On
top of the compiler+lpn2sim bars we overlay the compiler+lpn2sim
vs. compiler+Verilator speedup. Despite the log-scale y-axis, one
needs to zoom in to see the small amount of time taken by lpn2sim.

lpn2sim reduces auto-tuning time to a negligible amount,
turning a highly non-interactive process into an interactive
compile-and-run cycle. This enables software engineers to
think differently about optimization, and to do it more often
and without the accelerator hardware. Even if engineers had
access to the actual hardware accelerator, using lpn2sim to
auto-tune allows many more developers to do so in parallel.
Compared to cycle-accurate simulation, it saves not only time
but substantial amounts of compute resources and energy.

5.3.4 LPN-based tools enable performance verification

Consider the JPEG decoder in the autonomous driving sce-
nario described in §1. To ensure safe operation in all circum-
stances, engineers need hard guarantees on the accelerator’s
performance, particularly for unseen and untested workloads.
lpn2smt makes it possible to prove non-trivial bounds that are
difficult to infer from source code or semantic interfaces.

The first example is determining, for some image compres-
sion ratio x%, the worst-case and best-case latency, and the
corresponding worst-case and best-case inputs. Take some
specific examples that may be relevant to the engineers: For a
typical 90% compression ratio, lpn2smt proves that the worst-
case decoding latency is 2,290 cycles for 12 RGB (18 YCrCb)
8×8 macro blocks. If the input images consist of 4 least-
compressed and 14 maximally-compressed macro blocks, the
best-case decoding latency is 1,717 cycles, and the difference
between worst-case and best-case latency is 33%. At a 75%
compression ratio, the worst-case and best-case decoding la-
tencies are 3,063 and 2,540 cycles, respectively. lpn2smt took
less than 2 minutes to find and prove these bounds.

Similarly, a Protoacc user may wonder about such bounds
for serializing a message with a fixed number of bytes. We
used lpn2smt to prove that, for message types with 16 fields
(total 10KiB), the latency is between 726 and 1,074 cycles.
SoC designers could leverage this kind of proofs when incor-
porating third-party accelerator blocks into their design and
reason about performance implications.

lpn2smt can also be used to prove bounds on the accuracy of
the performance interfaces produced by lpn2pi. Using lpn2smt,
we verified formally that the latency predicted by JPEG’s
performance interface will always be within at most 43% of
the LPN’s prediction for 12 RGB (18 YCrCb) 8×8 macro
blocks. This result is significant, because the input space is
6418 possible images, and thus infeasible to explore directly.
This bound is not tight, but guaranteed to be correct.

Of course, the strength of the guarantees depends on the ac-
curacy of the LPN. Validation tools (see §6 below) could pro-
vide confidence levels to accompany vendor-provided LPNs.

6 Discussion
In this section, we present further thoughts on how LPNs
can help accelerator vendors, whether LPNs leak intellectual
property, and how LPNs can be validated against the RTL.

13

Using LPNs in the accelerator design stage. An LPN can
be written even before the accelerator’s RTL is finalized. This
LPN can be released to software engineers in the same orga-
nization, who can then start optimizing software for the accel-
erator using lpn2sim, as well as identify mismatches in perfor-
mance expectations early (using lpn2pi and lpn2smt), before
the design is finalized. Since accelerator vendors often release
SDKs along with their accelerators, the LPN can help speed
up development by providing visibility into the expected per-
formance behavior of the accelerator before it is built.

How much proprietary information does an LPN re-
veal? To ensure that LPNs can be shared beyond the same
organization and with software developers at large, they must
not leak proprietary information. We argue that this is the case,
since (1) most of the information revealed through the struc-
ture of the LPN is typically already revealed in architectural
block diagrams that are made public by vendors, and (2) while
LPNs provide additional information about the latency of the
different compute stages, they do not describe how the accel-
erator achieves this latency, nor give circuit-level details and
micro-architectural implementation details that are central
to achieving competitive frequency and power consumption.
That said, concerned vendors could still provide lower time-
resolution LPNs, i.e., LPNs with coarser-grained delay func-
tions; this reduces accuracy to safeguard proprietary details.

Validating LPNs. Since LPNs are distilled manually, they
can contain mistakes; hence, after being constructed, LPNs
should be validated. Developers could validate the LPN
against the RTL using their RTL testbenches. Validating an
LPN against the RTL is similar to how engineers validate the
RTL itself using functional simulators, code reviews, and test-
benches. Nevertheless, we plan to pursue building automated
tools that can formally validate LPNs against the RTL.

7 Related Work
Petri nets have long been used to model and evaluate the per-
formance of systems [24]. Furthermore, languages modeling
a system of queues and actors are not a new idea. Kahn net-
works [52], dataflow networks [3, 23], and synchronous lan-
guages [8] share similarities with LPNs: more or less explic-
itly describing the flow of tokens in the system.
Analytical modeling of accelerators: Amid the rise of
domain-specific accelerators and the need for efficient code
generation, research explored semi-analytical modeling for
performance models of Domain Specific Accelerators (DSA).
For example, to search for good tiling and mapping of loop
nests on dense tensor accelerators, [65] proposed performance
models that can quickly evaluate the performance of running
various loopnests on a family of accelerators. [62] tackles a
similar problem for sparse tensor accelerators, and [33] for a
SmartNIC. Those approaches use domain-specific knowledge
in their modeling, so they typically don’t offer abstractions or
methodologies that can be reused in other domains. LPNs are
domain-agnostic and provide a general substrate for building

performance models of accelerators. There are also analytical
models for accelerators that focus on data movement costs or
asynchronous operations with the CPU [1, 19, 75], rather than
the performance of the accelerator itself. Those models have
a coarser modeling granularity than LPNs.
Performance models in the hardware community: The
monograph [26] covers performance modeling techniques in
detail. Analytical models based, for example, on Amdahl’s
law have studied various computing scenarios to establish per-
formance trends [27,36]. Similarly, the roofline model [84] al-
lows simple modeling to compute performance upper bounds.
Other analytical models [56,57] build good predictors of pro-
cessor performance from a few numbers: number of cache
misses, branch mispredictions, etc. Finally, interval simula-
tion [14, 30, 37] measures the distribution of performance-
structuring events (cache misses and mispredictions) and pro-
file the performance of the machine around those events to
produce performance models. The way we construct perfor-
mance interfaces from LPNs leverages similar principles.

Machine learning has been used to produce so-called pre-
dictive performance models of systems [25, 41, 47, 72]. These
models are incomplete representations of performance, as
they can only answer the questions they were trained on.

The use of simulators [10, 39, 76] to model performance is
a battle-tested strategy. To make simulation faster, sampled
simulation has been proposed [83, 85]. Challenges include
computing warm states (caches, predictors, etc.) and identi-
fying representative parts of benchmarks [6, 38, 67]. Finally,
FPGAs [18, 54, 77, 78] can be used to speed up simulation,
but FPGA simulation is possible only when the RTL is avail-
able, and compilation for FPGA is slow.

In contrast to these approaches, LPNs not only produce ac-
curate executable models of hardware but can also be trans-
formed into other useful representations (such as performance
interfaces) to address broader performance questions.

LPNs for accelerators are complementary to host simula-
tors like gem5 [10]. One can replace the gem5+RTL simu-
lation mode with gem5+LPN for accelerators. gem5+RTL
is normally bottlenecked by the RTL simulation, and
gem5+LPN would shift the bottleneck to gem5.

8 Conclusion
Performance interfaces promise to offer a standardized view
of accelerator performance. Despite the complexity of acceler-
ators and system software, the LPN IR we propose can accu-
rately represent the dynamics of various accelerators, and ltc
can answer non-trivial and valuable performance questions.

9 Acknowledgments
We are grateful to Katerina Argyraki, Ed Bugnion, Jim Larus,
and Diyu Zhou for their help in shaping the ideas presented
here. We thank our shepherd, Abhishek Bhattacharjee, and the
anonymous reviewers for their help in improving our paper.

14

References
[1] Altaf, M. S. B., and Wood, D. A. LogCA: A high-level

performance model for hardware accelerators. In 2017
ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA) (2017), pp. 375–388.

[2] Apache Versatile Tensor Architecture. https://
tvm.apache.org/vta.

[3] Arvind, Gostelow, K. P., and Plouffe, W. Indeterminancy,
monitors, and dataflow. In Symp. on Operating Systems
Principles (1977).

[4] AWS Inferentia Accelerators for Deep Learning
Inference. https://aws.amazon.com/machine-
learning/inferentia/.

[5] AWS Nitro System. https://aws.amazon.com/ec2/
nitro/.

[6] Baddouh, C. A., Khairy, M., Green, R. N., Payer, M., and
Rogers, T. G. Principal Kernel Analysis: A Tractable
Methodology to Simulate Scaled GPU Workloads. In
IEEE/ACM Intl. Symp. on Microarchitecture (2021).

[7] Beamer, S. A case for accelerating software rtl simula-
tion. In IEEE Micro Journal (2020).

[8] Berry, G., and Gonthier, G. The Esterel synchronous
programming language: Design, semantics, implemen-
tation. Sci. Comput. Program. (1992).

[9] NVIDIA Bluefield-2 DPU. https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/
documents/datasheet-nvidia-bluefield-2-
dpu.pdf.

[10] Binkert, N. L., Beckmann, B. M., Black, G., Reinhardt,
S. K., Saidi, A. G., Basu, A., Hestness, J., Hower, D.,
Krishna, T., Sardashti, S., Sen, R., Sewell, K., Altaf, M.
S. B., Vaish, N., Hill, M. D., and Wood, D. A. The gem5
simulator. SIGARCH Comput. Archit. News (2011).

[11] Boonstoppel, P., Cadar, C., and Engler, D. R. RWset:
Attacking path explosion in constraint-based test gen-
eration. In Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (2008).

[12] Bosshart, P., Gibb, G., Kim, H., Varghese, G., McKeown,
N., Izzard, M., Mujica, F. A., and Horowitz, M. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for SDN. In ACM SIGCOMM
Conf. (2013).

[13] Cadar, C., Dunbar, D., and Engler, D. R. KLEE: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In Symp. on Operating
Sys. Design and Implem. (2008).

[14] Carlson, T. E., Heirman, W., and Eeckhout, L. Sniper:
exploring the level of abstraction for scalable and ac-
curate parallel multi-core simulation. In Intl. Conf. for
High Performance Computing, Networking, Storage and
Analysis (2011).

[15] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q.,
Shen, H., Cowan, M., Wang, L., Hu, Y., Ceze, L.,
Guestrin, C., and Krishnamurthy, A. TVM: An auto-
mated end-to-end optimizing compiler for deep learning.
In Symp. on Operating Sys. Design and Implem. (2018).

[16] Chen, T., Zheng, L., Yan, E., Jiang, Z., Moreau, T., Ceze,
L., Guestrin, C., and Krishnamurthy, A. Learning to op-
timize tensor programs. In Advances in Neural Informa-
tion Processing Systems (2018).

[17] Chiosa, M., Maschi, F., Müller, I., Alonso, G., and May,
N. Hardware acceleration of compression and encryp-
tion in SAP HANA. In Intl. Conf. on Very Large
Databases (2022).

[18] Chiou, D., Sunwoo, D., Kim, J., Patil, N. A., Reinhart,
W. H., Johnson, D. E., Keefe, J., and Angepat, H. FPGA-
Accelerated Simulation Technologies (FAST): Fast, full-
system, cycle-accurate simulators. In IEEE/ACM Intl.
Symp. on Microarchitecture (2007).

[19] Culler, D. E., Karp, R., Patterson, D., Sahay, A.,
Schauser, K. E., Santos, E., Subramonian, R., and von
Eicken, T. LogP: Towards a realistic model of parallel
computation. In Proc. of Fourth ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming
(San Diego, CA, May 1993).

[20] Darwin: A co-processor for long read alignment. https:
//github.com/yatisht/darwin. Accessed 1-Dec-
2023.

[21] Darwin. Darwin test data. https://github.com/
yatisht/darwin/tree/master/RTL/GACT/
test_data. Accessed 1-Dec-2023.

[22] de Moura, L. M., and Bjørner, N. Z3: An efficient SMT
solver. In Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (2008).

[23] Dennis, J. B. First version of a data flow procedure
language. In Programming Symposium, Proceedings
Colloque sur la Programmation, Paris, France, April 9-
11, 1974 (1974), B. J. Robinet, Ed., Lecture Notes in
Computer Science.

[24] Diallo, O., Rodrigues, J. J., and Sene, M. Chapter 11 -
Performance evaluation and Petri nets. In Modeling and
Simulation of Computer Networks and Systems, M. S.
Obaidat, P. Nicopolitidis, and F. Zarai, Eds. Morgan
Kaufmann, 2015.

15

https://tvm.apache.org/vta
https://tvm.apache.org/vta
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/ec2/nitro/
https://aws.amazon.com/ec2/nitro/
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://github.com/yatisht/darwin
https://github.com/yatisht/darwin
https://github.com/yatisht/darwin/tree/master/RTL/GACT/test_data
https://github.com/yatisht/darwin/tree/master/RTL/GACT/test_data
https://github.com/yatisht/darwin/tree/master/RTL/GACT/test_data

[25] Dubach, C., Jones, T. M., and O’Boyle, M. F. P. Mi-
croarchitectural design space exploration using an
architecture-centric approach. In IEEE/ACM Intl. Symp.
on Microarchitecture (2007).

[26] Eeckhout, L. Computer Architecture Performance Eval-
uation Methods. Synthesis Lectures on Computer Ar-
chitecture. Morgan & Claypool Publishers, 2010.

[27] Esmaeilzadeh, H., Blem, E. R., Amant, R. S., Sankar-
alingam, K., and Burger, D. Dark silicon and the end of
multicore scaling. In Intl. Symp. on Computer Architec-
ture (2011).

[28] Facebook: Video transcoding with Mount Shasta.
https://engineering.fb.com/2019/03/14/
data-center-engineering/accelerating-
infrastructure/.

[29] Firestone, D., Putnam, A., Mundkur, S., Chiou, D.,
Dabagh, A., Andrewartha, M., Angepat, H., Bhanu, V.,
Caulfield, A. M., Chung, E. S., Chandrappa, H. K.,
Chaturmohta, S., Humphrey, M., Lavier, J., Lam, N., Liu,
F., Ovtcharov, K., Padhye, J., Popuri, G., Raindel, S.,
Sapre, T., Shaw, M., Silva, G., Sivakumar, M., Srivas-
tava, N., Verma, A., Zuhair, Q., Bansal, D., Burger, D.,
Vaid, K., Maltz, D. A., and Greenberg, A. G. Azure ac-
celerated networking: SmartNICs in the public cloud.
In Symp. on Networked Systems Design and Implem.
(2018).

[30] Genbrugge, D., Eyerman, S., and Eeckhout, L. Interval
simulation: Raising the level of abstraction in architec-
tural simulation. In Intl. Symp. on High-Performance
Computer Architecture (2010).

[31] Google HyperProtoBench. https://github.com/
google/HyperProtoBench. Accessed 1-Dec-2023.

[32] Google-Intel Infrastructure Processing Unit (IPU).
https://www.intel.com/content/www/us/en/
products/details/network-io/ipu/e2000-
asic.html.

[33] Guo, Z., Lin, J., Bai, Y., Kim, D., Swift, M., Akella, A.,
, and Liu, M. Lognic: A high-level performance model
for SmartNICs. In IEEE/ACM Intl. Symp. on Microar-
chitecture (2023).

[34] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Conference on Com-
puter Vision and Pattern Recognition (2016).

[35] Hill, M., and Janapa Reddi, V. Gables: A roofline model
for mobile socs. In Intl. Symp. on High-Performance
Computer Architecture (2019).

[36] Hill, M. D., and Marty, M. R. Amdahl’s law in the
multicore era. Computer (2008).

[37] Huang, J.-C., Lee, J. H., Kim, H., and Lee, H.-H. S.
GPUMech: GPU performance modeling technique
based on interval analysis. In IEEE/ACM Intl. Symp. on
Microarchitecture (2014).

[38] Huang, J.-C., Nai, L., Kim, H., and Lee, H.-H. S. TB-
Point: Reducing simulation time for large-scale gpgpu
kernels. In Intl. Parallel and Distributed Processing
Symp. (2014).

[39] Hughes, C. J., Pai, V. S., Ranganathan, P., and Adve, S. V.
RSIM: Simulating shared-memory multiprocessors with
ILP processors. Computer (2002).

[40] Intel QAT: Accelerating data compression and encryp-
tion. https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-quick-
assist-technology-overview.html.

[41] Ipek, E., McKee, S. A., Caruana, R., de Supinski, B. R.,
and Schulz, M. Efficiently exploring architectural de-
sign spaces via predictive modeling. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (2006).

[42] Iyer, R., Argyraki, K., and Candea, G. Performance In-
terfaces for Network Functions. In Symp. on Networked
Systems Design and Implem. (2022).

[43] Iyer, R., Argyraki, K., and Candea, G. Automatically
Reasoning About How Systems Code Uses the CPU
Cache. In Symp. on Operating Sys. Design and Implem.
(2024).

[44] Iyer, R., Pedrosa, L., Zaostrovnykh, A., Pirelli, S., Ar-
gyraki, K., and Candea, G. Performance contracts for
software network functions. In Symp. on Networked
Systems Design and Implem. (2019).

[45] Iyer, R. R., Ma, J., Argyraki, K. J., Candea, G., and Rat-
nasamy, S. The case for performance interfaces for hard-
ware accelerators. In Workshop on Hot Topics in Oper-
ating Systems (2023).

[46] Jensen, K. Coloured Petri nets: Basic concepts, analysis
methods and practical use. EATCS Monographs on
Theoretical Computer Science (1995).

[47] Joseph, P. J., Vaswani, K., and Thazhuthaveetil, M. J. A
predictive performance model for superscalar proces-
sors. In IEEE/ACM Intl. Symp. on Microarchitecture
(2006).

[48] Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M.,
Jablin, T. B., Kurian, G., Laudon, J., Li, S., Ma, P. C., Ma,

16

https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://engineering.fb.com/2019/03/14/data-center-engineering/accelerating-infrastructure/
https://github.com/google/HyperProtoBench
https://github.com/google/HyperProtoBench
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/e2000-asic.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-quick-assist-technology-overview.html

X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z.,
and Patterson, D. A. Ten lessons from three generations
shaped Google’s TPUv4i : Industrial product. In Intl.
Symp. on Computer Architecture (2021).

[49] Jouppi, N. P., Young, C., Patil, N., Patterson, D. A.,
Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,
N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark,
C., Coriell, J., Daley, M., Dau, M., Dean, J., Gelb, B.,
Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hag-
mann, R., Ho, C. R., Hogberg, D., Hu, J., Hundt, R., Hurt,
D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A., Khaitan,
H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon,
J., Law, J., Le, D., Leary, C., Liu, Z., Lucke, K., Lundin,
A., MacKean, G., Maggiore, A., Mahony, M., Miller,
K., Nagarajan, R., Narayanaswami, R., Ni, R., Nix, K.,
Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,
Ross, J., Ross, M., Salek, A., Samadiani, E., Severn,
C., Sizikov, G., Snelham, M., Souter, J., Steinberg, D.,
Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tut-
tle, E., Vasudevan, V., Walter, R., Wang, W., Wilcox, E.,
and Yoon, D. H. In-datacenter performance analysis of
a tensor processing unit. In Intl. Symp. on Computer Ar-
chitecture (2017).

[50] Kaggle. Div2k jpeg image dataset. https://
www.kaggle.com/datasets/mingyuouyang/div2k-
jpeg-0400.

[51] Kaggle. Flickr image dataset. https://
www.kaggle.com/datasets/hsankesara/flickr-
image-dataset.

[52] Kahn, G. The semantics of a simple language for parallel
programming. In Information Processing, Proceedings
of the 6th IFIP Congress 1974 (1974).

[53] Karandikar, S., Leary, C., Kennelly, C., Zhao, J., Parimi,
D., Nikolic, B., Asanovic, K., and Ranganathan, P. A
hardware accelerator for protocol buffers. In IEEE/ACM
Intl. Symp. on Microarchitecture (2021).

[54] Karandikar, S., Mao, H., Kim, D., Biancolin, D., Amid,
A., Lee, D., Pemberton, N., Amaro, E., Schmidt, C.,
Chopra, A., Huang, Q., Kovacs, K., Nikolic, B., Katz,
R. H., Bachrach, J., and Asanovic, K. FireSim: FPGA-
accelerated cycle-exact scale-out system simulation in
the public cloud. In Intl. Symp. on Computer Architec-
ture (2018).

[55] Kim, M. A., and Edwards, S. A. Computation vs. mem-
ory systems: Pinning down accelerator bottlenecks. In
Intl. Symp. on Computer Architecture (2010).

[56] Lee, B. C., and Brooks, D. M. Accurate and efficient
regression modeling for microarchitectural performance
and power prediction. In Intl. Conf. on Architectural

Support for Programming Languages and Operating
Systems (2006).

[57] Lee, B. C., Collins, J. D., Wang, H., and Brooks, D. M.
CPR: Composable performance regression for scalable
multiprocessor models. In IEEE/ACM Intl. Symp. on
Microarchitecture (2008).

[58] Li, M., Zhang, M., Wang, C., and Li, M. AdaTune:
Adaptive tensor program compilation made efficient.
In Advances in Neural Information Processing Systems
(2020).

[59] Liu, J., Maltzahn, C., Ulmer, C. D., and Curry, M. L. Per-
formance characteristics of the BlueField-2 SmartNIC.
https://arxiv.org/abs/2105.06619, 2021.

[60] Liu, M., Cui, T., Schuh, H., Krishnamurthy, A., Peter,
S., and Gupta, K. Offloading distributed applications
onto SmartNICs using IPipe. In ACM SIGCOMM Conf.
(2019).

[61] Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kir-
pichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore,
J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E.,
Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson,
F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, v.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Sco-
patz, A. SymPy: symbolic computing in Python. PeerJ
Computer Science 3 (Jan. 2017), e103.

[62] Nayak, N., Odemuyiwa, T. O., Ugare, S., Fletcher, C. W.,
Pellauer, M., and Emer, J. S. TeAAL: A declara-
tive framework for modeling sparse tensor accelerators,
2023.

[63] Nider, J., and Fedorova, A. S. The last CPU. In Work-
shop on Hot Topics in Operating Systems (2021).

[64] Norrie, T., Patil, N., Yoon, D. H., Kurian, G., Li, S.,
Laudon, J., Young, C., Jouppi, N. P., and Patterson, D. A.
Google’s training chips revealed: TPUv2 and TPUv3.
In IEEE Hot Chips Symposium (2020).

[65] Parashar, A., Raina, P., Shao, Y. S., Chen, Y.-H., Ying,
V. A., Mukkara, A., Venkatesan, R., Khailany, B., Keck-
ler, S. W., and Emer, J. S. Timeloop: A systematic ap-
proach to DNN accelerator evaluation. In IEEE Intl.
Symp. on Performance Analysis of Systems and Software
(2019).

[66] PCI Express Technology. https://
www.mindshare.com/files/ebooks/PCI%
20Express%20Technology%203.0.pdf.

[67] Perelman, E., Hamerly, G., Biesbrouck, M. V., Sher-
wood, T., and Calder, B. Using SimPoint for accurate
and efficient simulation. In ACM SIGMETRICS Conf.
(2003).

17

https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/mingyuouyang/div2k-jpeg-0400
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset
https://arxiv.org/abs/2105.06619
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf
https://www.mindshare.com/files/ebooks/PCI%20Express%20Technology%203.0.pdf

[68] Performance interfaces (project website). https://
dslab.epfl.ch/research/perf.

[69] Peterson, J. L. Petri nets. In ACM Computing Surveys
(1977).

[70] Pourhabibi, A., Gupta, S., Kassir, H., Sutherland, M.,
Tian, Z., Drumond, M. P., Falsafi, B., and Koch, C. Opti-
mus Prime: Accelerating data transformation in servers.
In Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (2020).

[71] Protocol buffers. http://code.google.com/p/
protobuf/. Accessed on 1-Dec-2023.

[72] Qiu, Y., Xing, J., Hsu, K., Kang, Q., Liu, M., Narayana,
S., and Chen, A. Automated SmartNIC offloading in-
sights for network functions. In Symp. on Operating
Systems Principles (2021).

[73] Ranganathan, P., Stodolsky, D., Calow, J., Dorfman, J.,
Hechtman, M. G., Smullen, C., Kuusela, A., Laursen,
A. J., Ramirez, A., Wijaya, A. A., Salek, A., Cheung, A.,
Gelb, B., Fosco, B., Kyaw, C. M., He, D., Munday, D. A.,
Wickeraad, D., Persaud, D., Stark, D., Walton, D., Indu-
palli, E., Perkins-Argueta, E., Lou, F., Wu, H. K., Chong,
I. S., Jayaram, I., Feng, J., Maaninen, J., Lucke, K. A.,
Mahony, M., Wachsler, M. S., Tan, M., Penukonda, N.,
Dasharathi, N., Kongetira, P., Chauhan, P., Balasubra-
manian, R., Macias, R., Ho, R., Springer, R., Huffman,
R. W., Foss, S., Bhatia, S., Gwin, S. J., Sekar, S. K.,
Sokolov, S. N., Muroor, S., Rautio, V.-M., Ripley, Y.,
Hase, Y., and Li, Y. Warehouse-scale video acceleration:
Co-design and deployment in the wild. In Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (2021).

[74] Smith, J. E. Decoupled access/execute computer archi-
tectures. ACM Trans. Comput. Syst. 2, 4 (1984), 289–
308.

[75] Sriraman, A., and Dhanotia, A. Accelerometer: Un-
derstanding acceleration opportunities for data center
overheads at hyperscale. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems
(2020), pp. 733–750.

[76] Sánchez, D., and Kozyrakis, C. ZSim: fast and accurate
microarchitectural simulation of thousand-core systems.
In Intl. Symp. on Computer Architecture (2013).

[77] Tan, Z., Qian, Z., Chen, X., Asanovic, K., and Patterson,
D. A. DIABLO: A warehouse-scale computer network
simulator using FPGAs. In Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems (2015).

[78] Tan, Z., Waterman, A., Avizienis, R., Lee, Y., Cook, H.,
Patterson, D. A., and Asanovic, K. RAMP gold: an
FPGA-based architecture simulator for multiprocessors.
In Design Automation Conf. (2010).

[79] Tork, M., Maudlej, L., and Silberstein, M. Lynx: A
SmartNIC-driven accelerator-centric architecture for
network servers. In Intl. Conf. on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (2020).

[80] Ultra-Embedded. High-throughput JPEG decoder.
https://github.com/ultraembedded/core_jpeg.
Accessed 1-Dec-2023.

[81] Veripool. The Verilator simulator. https://
www.veripool.org/verilator/. Accessed 1-Dec-
2023.

[82] Wang, T., Yang, X., Antichi, G., Sivaraman, A., and
Panda, A. Isolation mechanisms for high-speed packet-
processing pipelines. In Symp. on Networked Systems
Design and Implem. (2022).

[83] Wenisch, T. F., Wunderlich, R. E., Ferdman, M., Aila-
maki, A., Falsafi, B., and Hoe, J. C. SimFlex: Statistical
sampling of computer system simulation. In IEEE/ACM
Intl. Symp. on Microarchitecture (2006).

[84] Williams, S., Waterman, A., and Patterson, D. A.
Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM 52, 4 (2009).

[85] Wunderlich, R. E., Wenisch, T. F., Falsafi, B., and Hoe,
J. C. SMARTS: Accelerating microarchitecture simula-
tion via rigorous statistical sampling. In Intl. Symp. on
Computer Architecture (2003).

[86] Zuberek, W. Timed Petri nets definitions, properties,
and applications. Microelectronics Reliability (1991).

18

https://dslab.epfl.ch/research/perf
https://dslab.epfl.ch/research/perf
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
https://github.com/ultraembedded/core_jpeg
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/

A Artifact Appendix
Our work is part of the umbrella project on performance
interfaces [68], which aims to increase performance clarity
for systems code and hardware, as well as formally prove
performance properties. All artifact materials are available on
the project website.

The artifact has three parts: LPN, ltc, and the benchmarks.
Both LPN and ltc are available through an lpnlang Python
package. For the first part, LPN includes several constructs
for developers to build their own LPNs. The LPNs we built
also serve as examples of how to use those constructs. For
the second part, we provide simple scripts to run ltc, which
includes using lpn2pi to extract executable performance in-
terfaces, using lpn2smt to verify performance properties, and
using lpn2sim for fast performance simulation. Note, a new
LPN may contain structures that cannot be analyzed by the
tools in ltc; in such cases, ltc will raise an error. Automati-
cally transforming a general LPN as defined in §3 to an LPN
amenable to analysis by ltc’s tools is left as a future work.

In the third part, we provide benchmarks that are used in
the paper and scripts to easily run them. Note that, to simulate
the Protoacc RTL, the whole SoC needs to be simulated, and
the simulation is slow. The simulation speed we provided in
§5 for the Protoacc RTL does not include the SoC simulation.
The artifact contains also a Docker image with a ready envi-
ronment to run the tools and the benchmarks. As LPN simu-
lation normally runs for a very short amount of time, repro-
ducing the results requires that the hardware be kept stable:
disable hyperthreading, disable CPU frequency variation, etc.

We will be updating LPNs to improve readability, usabil-
ity, simulation speed, and accuracy. ltc is also subject to up-
dates that improve accuracy of lpn2pi and/or the time it takes
lpn2smt to prove/disprove performance properties. The ltc
toolchain will evolve to include more tools and improvements.

A.1 Formal definition of an input class
To fully understand how input classes are implemented and
used in ltc, we present here a more detailed definition to com-
plement that of §4.1.

A trace e of an LPN is a sequence of transition-commit
records, represented as tuples ⟨Tid ,KI ,KO,s⟩. A trace charac-
terizes the outcome of executing an LPN (as per the defini-
tion of “execution” in §4.1). The first component of a record
is the transition Tid whose commit was recorded. The second
and third component is the input set KI , respectively output
set KO, of token IDs corresponding to the tokens consumed
(respectively produced) by the commit of Tid . Once a token is
consumed, it vanishes forever, so a token identifier can appear
at most twice in a trace: as part of the commit that produced
it and (possibly) as part of the commit that consumed it. The
fourth component of a trace record is a sequence number s that
represents the transition’s commit timestamp augmented with
sequencing information s.t. ⟨T,∗,KO,s⟩∧ ⟨T ′,K′

I ,∗,s′⟩∧ s <

s′ ⇒ transition T committed before transition T ′ (and thus
KO was available at the same time as K′

I), even if T and T ′

committed at the same timestamp.
In a valid LPN trace, an input token can never be consumed

before it is produced, i.e., for all records ⟨Tid ,KI ,KO,s⟩ and
⟨T ′

id ,K
′
I ,K

′
O,s

′⟩, s < s′ ⇒ KI ∩K′
O = /0

For the rest of this section, timestamps are no longer rele-
vant, so we drop them from our notation. We define the opera-
tor [|.|] that, for a given LPN, takes a set of initial input tokens
and produces a trace e of the execution of that LPN. We define
the relation ∼1 between pairs of traces that determines if the
two traces are equivalent modulo “harmless” permutations of
records as follows (l1++ l2 concatenates sequences l1 and l2):

pre++[⟨Tid1 ,KI1 ,KO1⟩;⟨Tid2 ,KI2 ,KO2⟩]++pos
∼1

pre++[⟨Tid2 ,KI2 ,KO2⟩;⟨Tid1 ,KI1 ,KO1⟩]++pos

A permutation as shown above is harmless if (1) id1 ̸=
id2; (2) Tid2 did not consume a token produced by Tid1 in
the corresponding commit, i.e., KO1 ∩KI2 = /0 (trace validity
already implies that KO2 ∩KI1 = /0); and (3) Tid1 and Tid2 do
not conflict, i.e., they do not share an output or an input place.

We define relation e1 ∼ e2 as the reflexive, transitive clo-
sure of ∼1 over the set of traces of a given LPN. We can now
define the set of all traces that are harmless permutations of
an initial trace e as ē = {e′|e ∼ e′}.

Given a trace e, we abstract it by dropping all the token
IDs and keeping only the cardinality of the input and output
sets in each record. Formally, we obtain the abstract trace
α(e) = map(γ,e) by applying the operator γ(⟨Tid ,KI ,KO⟩) =
⟨Tid , |KI |, |KO|⟩ to each record in e.

We say that the inputs (i.e., sets of initial tokens) i and i′

are in the same input class if and only if {α(e)|e ∈ [|i|]} =
{α(e)|e ∈ [|i′|]}.

A.2 Input class separation algorithm
Both lpn2pi and lpn2smt rely on a pre-processing step that
partitions a user-defined input space into input classes. This
pre-processing tool employs symbolic execution [13].

Before diving into the details of the tool, we first define the
concept of a conflict-free transition. A transition T is conflict-
free if and only if its input places are not input places for any
other transition, and its output places are not output places for
any other transition.

The tool symbolically executes the LPN with symbolic
inputs, i.e., input space defined by the user. The tool has
three main steps: (1) it first groups LPN transitions into
sorted strongly-connected components (SCCs). Transitions
are grouped into SCCs according to the edge directions re-
gardless of the edge functions. (2) It then iteratively commits
conflict-free transitions. The timestamp of a commit is com-
puted locally based on the tokens (locked in the input places)
and on the transition’s delay. After a transition becomes en-
abled, the tool commits it immediately without waiting for a

19

delay and without synchronizing with other transitions’ com-
mits. This implies that a commit with a timestamp ts1 can be
materialized before a commit from another transition with
ts2, where ts1 > ts2, The produced tokens will carry the times-
tamp of the commit that produced them. (3) Once there are
no more conflict-free transitions to commit, it commits one
conflicting transition at a time, synchronously (with priority
given to transitions in SCCs preceding other SCCs); this im-
plies that the earliest commit is materialized first.

After symbolically executing the LPN exhaustively, the
tool will find multiple paths. The input constraints associated
with each path defines an input class.

A.3 Estimating gT and εT in lpn2pi
To complement the description in §4.2, we provide further
details on how gT and εT are estimated, as well as assumptions
made by lpn2pi.

We first define loops and properties of loops that lpn2pi
handles. A loop in LPN is an alternating sequence of places
and transitions Pn → T1 → P1 → . . . → Tn → Pn. Assume, for
simplicity, that weights of edges are constants. lpn2pi only
handles loops with the following properties:

1. The loop does not fully contain another loop, i.e., no
strict subset of places and transitions in this loop forms
another loop.

2. The loop has one and only one place with initial tokens.

3. The loop guarantees token conservation. Without loss of
generality, assume the place with initial tokens is Pn, and
it has M initial tokens. Token conservation means that ini-
tial tokens in Pn flow through the transitions, potentially
changing in quantity, but eventually all M tokens flow
back to Pn. This completes an iteration through the loop.
More formally, a loop is token conserving if
wTnPn
wPnT1

× wT1P1
wP1T2

× ...×
wTn−1Pn−1

wPn−1Tn
= 1, where wTiPj is the

weight of the edge from Ti to Pj.

Given these assumptions, the loop delay ∆ and parallel factors
FTi for each transition Ti are calculated as shown below. Recall
that, initially, gT of each transition is set to T.δ, and that εT =
N ×gT , where N is the number of commits for transition T .

∆ =
n

∑
i=1

(
Ti.δ+gTi

×
(

FTi

C
−1

))
with FT1 =

M
wPnT1

, FT2 = FT1 ·
wT1P1

wP1T2

, FT3 = . . .

C = min(FT1 ,FT2 , . . . ,FTn)

and gTk
= max

(
gTk

,
∆

FTk

)

20

	Introduction
	Design Overview
	The Latency Petri Net Abstraction
	LPN Overview
	LPN Definition
	Distillation: From RTL to LPN
	Memory, Caches, and Interconnects

	Transforming the LPN
	Input Classes for lpn2pi and lpn2smt
	lpn2pi
	lpn2sim
	lpn2smt

	Evaluation
	Experimental setup
	Understanding LPNs in detail
	Accuracy and completeness of the LPN
	Representation efficiency
	Hardware engineer effort to write LPNs
	Utility to SoC and accelerator developers
	LPNs beyond accelerators

	Key results
	Performance interfaces are human-friendly
	Performance interfaces are accurate
	LPN-based performance simulation is up to 3 orders of magnitude faster than existing simulators
	LPN-based tools enable performance verification

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	Artifact Appendix
	Formal definition of an input class
	Input class separation algorithm
	Estimating gT and T in lpn2pi

