
Fast, Flexible, and Practical Kernel Extensions

Kumar Kartikeya Dwivedi† Rishabh Iyer∗ Sanidhya Kashyap†
†EPFL ∗UC Berkeley

Abstract

The ability to safely extend OS kernel functionality is a long-
standing goal in OS design, with the widespread use of the
eBPF framework in Linux and Windows demonstrating the
benefits of such extensibility. However, existing solutions
for kernel extensibility (including eBPF) are limited and con-
strain users either in the extent of functionality that they can
offload to the kernel or the performance overheads incurred
by their extensions.
We present KFlex: a new approach to kernel extensibil-

ity that strikes an improved balance between the expressiv-
ity and performance of kernel extensions. To do so, KFlex
separates the safety of kernel-owned resources (e.g., ker-
nel memory) from the safety of extension-specific resources
(e.g., extension memory). This separation enables KFlex to
use distinct, bespoke mechanisms to enforce each safety
property—automated verification and lightweight runtime
checks, respectively—which enables the offload of diverse
functionality while incurring low runtime overheads.

We realize KFlex in the context of Linux. We demonstrate
that KFlex enables users to offload functionality that can-
not be offloaded today and provides significant end-to-end
performance benefits for applications. Several of KFlex’s
proposed mechanisms have been upstreamed into the Linux
kernel mainline, with efforts ongoing for full integration.

1 Introduction

OS kernel extensions enable applications to share the same
core OS codebase, while specializing it based on their re-
quirements by incorporating application-specific functional-
ity into the kernel. After receiving significant attention in
the 90s [23, 39, 66, 74], kernel extensions have been thrust
into the spotlight once again with the introduction of the
eBPF framework in Linux [41] andWindows [5]. eBPF-based
kernel extensions are widely deployed today. For instance,
Meta is known to load 50–150 eBPF extensions on each of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA

© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-1251-7/24/11. . . $15.00
https://doi.org/10.1145/3694715.3695950

their servers [27], and Google, Netflix, Cloudflare, Apple,
Alibaba, and Dropbox have also documented several uses for
eBPF in production, such as better observability, faster and
more efficient networking, and improved security [17, 75].
Ideally, a framework for kernel extensibility must pro-

vide four key properties: safety, flexibility, performance, and
practicality. Safety requires guaranteeing that extensions do
not compromise the integrity of the kernel and other ap-
plications or extensions. Flexibility enables users to write
extensions that offload diverse functionality to the kernel.
Performance requires that extensions do not incur excessive
runtime overheads when executed as part of the kernel. Fi-
nally, practicality dictates that the framework should be easy
for developers to use and must not require them to learn
new programming languages or use specific toolchains.
Existing solutions for kernel extensibility do not pro-

vide all four properties simultaneously and typically ensure
safety along with only two of the three remaining proper-
ties. For instance, systems that use type- and memory-safe
programming languages to guarantee safety [23] offer good
performance and flexibility, but are not widely adopted be-
cause they require developers to learn new programming
languages. Similarly, systems that rely on runtime checks to
guarantee safety [66] offer flexibility and ease of use, but pro-
vide poor performance due to the large number of runtime
checks required for safety. Finally, systems that rely on au-
tomated bytecode verification (e.g., eBPF) have low runtime
overhead and can support various programming languages.
However, they sacrifice flexibility because automated veri-
fication techniques do not scale to arbitrary code [62, 81],
which limits the functionality that users can offload.

We present KFlex—a new approach to kernel extensibility
based on the observation that kernel safety comprises two
distinct sub-properties, each best enforced by a distinct mech-
anism. KFlex divides kernel safety into (1) kernel-interface
compliance, which requires extensions access kernel-owned
resources (i.e., kernel memory and kernel functions) only as
permitted, and (2) extension correctness, which requires that
extensions access their ownmemory safely and terminate cor-
rectly. To enforce kernel-interface compliance, KFlex uses
automated bytecode verification since accesses to kernel-
owned resources must satisfy semantic requirements beyond
memory safety (e.g., maintaining invariants on kernel data
structures). In contrast, to enforce extension correctness,
KFlex relies on lightweight runtime checks. This is because
accesses to extension-owned resources need not satisfy se-
mantic requirements, and simple runtime mechanisms are

1

https://doi.org/10.1145/3694715.3695950

sufficient to guarantee that accesses to the extension’s mem-
ory are within bounds, and ensure safe termination.

KFlex’s use of distinct mechanisms to guarantee safety
enables it to provide a better balance between flexibility, per-
formance, and practicality. By using automated bytecode ver-
ification, KFlex eliminates the need for users to use specific
languages and toolchains. By augmenting verification with
lightweight runtime mechanisms that scale to arbitrary code,
KFlex ensures that users can safely offload a wide range of
functionality. Finally, the combined use of the above mecha-
nisms ensures that KFlex incurs low runtime overhead since
the guarantees provided by verification limit the required
number of runtime checks.

We design and implement KFlex in the context of Linux—
we reuse the eBPF framework for automated verification
of kernel-interface compliance and augment it with a light-
weight runtime that enforces extension correctness. KFlex
retains the instruction set of eBPF’s bytecode [7] and the
interface through which eBPF extensions interact with the
Linux kernel. This design choice makes KFlex less flexible
than systems designed for extensibility [23] since Linux ex-
poses a narrower interface to the eBPF framework. However,
it ensures that KFlex is immediately useful to practitioners
since Linux is the de-facto OS of the cloud, and KFlex can
support existing eBPF extensions without modification.
The KFlex runtime relies on two key techniques, both

co-designed with eBPF’s verifier to ensure low performance
overhead. First, KFlex leverages lightweight software fault
isolation (SFI) [74] to sanitize all accesses performed by the
extension for its ownmemory. KFlex’s SFI uses eBPF’s range
analysis (§3.2) to elide checks when accesses for its own
memory are verifiably safe, which significantly reduces the
runtime overhead. Second, KFlex introduces extension can-

cellations: a mechanism that safely terminates long-running
extensions at near-zero runtime overhead (§3.3). This low
overhead stems from KFlex’s use of the eBPF verifier to
statically compute the set of kernel resources acquired by
an extension. Several of KFlex’s techniques have been up-
streamed into the Linux kernel mainline [33, 34], with an
ongoing effort for full integration [20].

We demonstrate that KFlex enables users to offload func-
tionality that cannot be offloaded using eBPF today, which
provides significant end-to-end performance benefits for ap-
plications. For example, we show how users can use KFlex
to offload both set() and get() operations in Memcached.
This flexibility enables the KFlex-based Memcached to out-
perform an eBPF-based Memcached [42]—which can only
offload get() operations—and Memcached running in user
space up to 2.83× and 3.01×, respectively. Similarly, we show
how users can offload arbitrary data structures to the ker-
nel, which enables the—currently unsupported—offload of
Redis functionality and provides a 1.65× improvement in
throughput compared to its user-space counterpart. Finally,
we show how KFlex’s flexibility enables users to co-design

extensions with user-space applications, which is necessary
for complex, production-grade applications.

In summary, this paper makes the following contributions:
• Separation of safety properties. We present a new
approach to kernel extensibility that separates safety into
two sub-properties and leverages bespoke mechanisms
to enforce each property.

• Runtime safety mechanisms. We present runtime
mechanisms co-designed with eBPF’s automated verifica-
tion to guarantee safe termination and memory safety at
low overhead.

• Practical design. We demonstrate that our approach
provides significant performance benefits for real appli-
cations and enables users to offload new functionality
to Linux without having to use specific programming
languages and toolchains.

KFlex is publicly available at https://rs3lab.github.io/KFlex.

2 Background and Motivation

In this section, we first define the target properties for any
kernel extension framework (§2.1) before describing existing
approaches and their shortcomings (§2.2).
We define kernel extensions as event handlers loaded by

user-space applications into the kernel to process specific ker-
nel events, such as system call invocations or packet arrivals.
These extensions typically serve two purposes: modifying
kernel functionality (e.g., disallowing specific inputs to sys-
tem calls), or offloading application-specific functionality to
the kernel (e.g., intercepting and processing packets belong-
ing to a particular application). In this work, we treat both
classes of extensions as one and hence use the terms offloads
and extensions interchangeably hereafter.

2.1 Target Properties

Safety. To be safe, kernel extensions must satisfy two prop-
erties. First, they must conform to the kernel-provided in-
terface, i.e., they must access kernel-owned memory objects
and invoke kernel functions only as permitted. We refer to
this as kernel-interface compliance. Second, extensions must
execute correctly, i.e., they should access their own memory
safely and provably terminate. We refer to this as extension
correctness.
Flexibility. Users should be able to express diverse function-
ality in their extensions. Flexibility is determined by (1) the
interface that the kernel exposes to extensions, and (2) the
programming model available to developers for writing their
extensions. The former is dictated by the design of the ker-
nel, while the latter is usually a function of the mechanisms
employed to ensure extension safety.
Performance. Extensions should incur (1) low runtime
overhead when executing as part of the kernel and (2) low

2

https://rs3lab.github.io/KFlex

communication overheadwhen interacting with applications
in user space. Both aspects of performance are critical to
modern applications. Applications today frequently offload
their “fast path” to the kernel [42, 49, 78, 83, 84], thereby
enabling the fast path to run at near-hardware I/O speeds
and avoid the overhead of complex kernel I/O stacks. As I/O
speeds increase rapidly [24] and processing times shrink to
the microsecond scale [21], even small runtime overheads
can significantly impact the performance of the application’s
fast path [22, 63]. Further, as applications are becoming in-
creasingly complex, it is infeasible to offload them entirely to
the kernel [42, 67]. As a result, low-overhead communication
between extensions and user space is increasingly necessary.
Practicality. To facilitate adoption, users should not have to
learn new programming languages or use specific toolchains
to write kernel extensions. The kernel-extension framework
should also be backward compatible and allow gradual adop-
tion of new features without disrupting existing extensions.

2.2 Prior Approaches to Safe Kernel Extensibility

We now discuss the three most relevant prior approaches to
safe kernel extensibility. Table 1 summarizes the pros and
cons of each approach, which we gradually explain in the
rest of this section. We describe other approaches in §7.
Safe languages. This approach—first proposed by the
Spin OS [23] and later revisited by Singularity [45] and
TockOS [51]—involves writing new OSes in type- and
memory-safe languages, with the safety properties of the
language guaranteeing that extensions execute safely. Since
these OSes are designed with extensibility as a first-class
goal, they provide maximum flexibility, both in terms of the
interface that the OS exposes to extensions and the function-
ality that developers can express within extensions. However,
adopting them in practice is challenging as they compel users
to use new OSes, and learn and use specific programming
languages and toolchains.
The emergence of Rust [14] as a memory-safe language

for systems programming has sparked renewed interest [47,
51, 57, 58] in this approach, however, we do not know of
a general-purpose kernel-extension framework that uses
Rust. We chose not to use Rust since we wanted KFlex to
generalize beyond a single programming language. We see
the use of Rust as complementary to KFlex, and discuss this
further in §6.
Software Fault Isolation (SFI). This approach—first pro-
posed by VINO [66]—leverages runtime checks to sandbox
the execution of extensions. The runtime checks typically
include: (1) bounds checks on memory accesses to ensure
memory safety and (2) a transactional mechanism for safely
aborting extensions and rolling back possible side effects
(such as acquired kernel object references).

This approach offers flexibility and ease of use since run-
time checks can guarantee safety for arbitrary code written

Approach Flexibility Performance Practicality

Safe languages (e.g., SPIN [23]) ✓ ✓ ×
Software Fault Isolation (e.g., VINO [66]) ✓ × ✓
Static verification (e.g., eBPF [41]) × ✓ ✓

Table 1. Summary of existing approaches to safe extensibility.

in diverse programming languages,. However, relying exclu-
sively on runtime checks to guarantee safety typically leads
to prohibitive performance overheads, which prevents these
solutions from being widely used.
Static verification. This approach—first described by Nec-
ula et al. [61] and later adopted by the eBPF framework [41]—
involves automatically verifying that extensions are safe be-
fore loading them into the kernel. This approach offers both
performance and practicality. The use of verification elimi-
nates runtime checks, and since the analysis is performed
either on the binary or on bytecode, developers can use di-
verse programming languages.

Since we use eBPF as a starting point for KFlex, we pro-
vide additional background on how it works. eBPF is a
register-based virtual machine in the Linux kernel. Users
write extensions as event handlers for specific kernel events
(e.g., packet arrivals [44]). The extensions are then compiled
down to eBPF bytecode [7], statically verified for safety by
an in-kernel verifier, and finally loaded at the kernel “hook”
for the designated kernel event.

eBPF extensions interact with the kernel through a well-
defined interface which exposes kernel objects via hook-
specific inputs or helper functions. This interface is cur-
rently more limited than the corresponding interface in OSes
designed with extensibility as a primary goal [23] due to
eBPF being retrofitted to Linux. However, this interface is
gradually expanding with new extension hooks and helper
functions being introduced in response to emerging use
cases [43].
To keep the automated verification of kernel safety

tractable, the eBPF framework enforces two constraints on
extensions. First, since automated verification does not scale
to arbitrary data structures [62, 81], eBPF prevents exten-
sions from defining data structures and requires that they
use a specific set of kernel-provided data structures (referred
to as eBPF maps). Second, to guarantee termination, eBPF
disallows loops that do not have statically computable loop
bounds. For example, even a simple loop that iterates over
a list (e.g., while (node->next != NULL)) will be rejected
by the eBPF verifier since termination cannot be statically
guaranteed. This constraint also limits the use of synchro-
nization primitives within an extension. For example, eBPF
extensions today can only acquire a single lock because the
verifier cannot guarantee deadlock avoidance when exten-
sions acquire more than one lock instance.
While eBPF has been adopted in both Linux and Win-

dows due to its performance and practicality, the above con-
straints limit its flexibility and are a frequent pain point
for practitioners [42, 43, 64, 73, 84]. The current approach

3

to addressing this issue involves incrementally expanding
the verifier’s capabilities [30, 31, 35]. However, this strategy
presents two major challenges. First, the process of merging
new capabilities into the Linux kernel is time-consuming and
labor-intensive, creating a substantial barrier for developers.
Second, it leads to an increase in the complexity of the veri-
fier, which increases the likelihood of bugs in kernel code.
Recent work [47] uncovered several such bugs, highlight-
ing the severity of this issue. These drawbacks demonstrate
that the current case-by-case approach to addressing eBPF’s
limited flexibility is infeasible in the long term, and a more
comprehensive and scalable solution is required.
Summary. Existing approaches to kernel extensibility fail
to provide all four target properties simultaneously. Ap-
proaches based on new programming languages are rarely
adopted in practice, runtime-based approaches incur pro-
hibitive performance overheads, and verification-based ap-
proaches limit the functionality that users can offload. In
the next section, we describe KFlex: a composite approach
to kernel extensibility that provides an improved tradeoff
between flexibility, performance, and practicality.

3 KFlex Design

KFlex’s design is based on the observation that the two
sub-properties that comprise safety—kernel-interface com-
pliance and extension correctness—are best enforced by dis-
tinct mechanisms. Automated verification is best suited to
enforce kernel-interface compliance since accesses to kernel-
owned resources must satisfy semantic requirements be-
yond memory safety (e.g., maintaining invariants on ker-
nel data structures). Further, since extensions can only ac-
cess kernel-owned resources via well-defined interfaces (e.g.,
hook-specific inputs and helper functions), automated veri-
fication techniques are sufficient to guarantee the safety of
kernel-owned resources. In contrast, runtime checks are best
suited to enforcing extension correctness since the kernel
only requires extensions to be hang-free and memory-safe
when accessing extension-owned memory. To keep the re-
quired runtime checks simple, KFlex allocates the extension-
owned memory in a dedicated portion of the kernel’s virtual
address space, thus eliminating memory aliasing between
kernel-owned and extension-owned memory.
We realize KFlex in the context of Linux using the eBPF

framework as a starting point. We chose to do so since Linux
is the de-facto OS of the cloud, and eBPF-based extensions
are widely used. KFlex retains the instruction set of eBPF’s
bytecode and the interface throughwhich extensions interact
with the Linux kernel. This makes KFlex fully backward-
compatible with eBPF and allows it to run existing eBPF-
based extensions without modifications.

Figure 1 presents an overview of KFlex. The KFlex work-
flow involves three main steps: In step 1 , KFlex takes as
input the extension as eBPF bytecode and uses the eBPF

Figure 1. Overview of KFlex. Blue boxes denote components intro-
duced by KFlex, and transparent boxes denote eBPF components
that KFlex relies upon.

verifier to check kernel-interface compliance. Since KFlex
retains the interface that Linux exposes to eBPF extensions,
we reuse eBPF’s kernel-interface compliance checker. In step
2 , KFlex’s instrumentation engine (Kie) adds two types of
instrumentation to the extension bytecode: (i) it sanitizes
all heap accesses to prevent out-of-bounds access for the
heap, and (ii) instruments loops to ensure that KFlex can
terminate them safely. During this step, Kie leverages the
eBPF verifier’s range and loop termination analysis to reduce
the emitted instrumentation and thus reduce the runtime
overhead. The instrumented bytecode is then passed to the
eBPF JIT, which compiles it down to machine code. KFlex
augments the eBPF JIT to ensure that the added instrumen-
tation is correctly compiled to native instruction sequences.
Finally, in step 3 , the KFlex runtime executes the extension
while guaranteeing memory safety and safe termination.

We now introduce KFlex’s programming model (§3.1),
before describing how it guarantees memory safety (§3.2)
and safe termination (§3.3) at low runtime overheads. Finally,
we discuss how KFlex enables extensions to transparently
share memory with user-space applications (§3.4).

3.1 Programming Model

Like eBPF, KFlex extensions are written as event handlers
that process specific kernel events. Listing 1 shows an exam-
ple of a KFlex extension that processes incoming network
packets at the XDP hook [44]. This extension implements a
simple key-value store that manages a linked list of key-value
pairs and can serve update and delete requests. The exten-
sion first parses the packet (line 17), then checks if the key
is present in the linked list (lines 24–28), and if so, updates
or deletes the value based on the request type (lines 37– 44).

KFlex provides APIs that enable developers to declare
a memory region that is fully owned and managed by the
extension; we call this region the extension heap. Developers
declare extension heaps using the kflex_heap(size) macro,
which specifies the size of the heap in GB (line 7). Once this
heap is declared, developers can use kflex_malloc() and
kflex_free() to allocate and de-allocate memory from the
heap, create arbitrary memory layouts, and define their own
data structures just like they would in user space (line 44).
Table 2 summarizes the APIs that KFlex provides.

4

Type API Functionality

Macro kflex_heap(size) Heap declaration

Ext

void *kflex_malloc(size_t) Allocate heap memory
void kflex_free(void *) Deallocate heap memory
void kflex_spin_lock(lock_t *) Acquire a lock
void kflex_spin_unlock(lock_t *) Release a lock

Table 2. Summary of APIs provided by the KFlex runtime.

KFlex also permits extensions to contain complex loops
for which it is infeasible to statically compute loop bounds.
For instance, our example key-value store iterates over a
linked list using a possibly non-terminating loop condi-
tion (lines 24–28). KFlex also provides a queue-based spin
lock [56] that enables developers to synchronize access to
shared memory between user-space applications and exten-
sions. Unlike in eBPF, where extensions cannot acquire more
than one lock at any point in time [28], KFlex extensions
can safely hold multiple instances of KFlex’s spin lock si-
multaneously.

KFlex imposes one notable constraint on extensions.
Specifically, KFlex requires that loops in the extension code
converge for kernel-owned resources, i.e., any kernel re-
sources acquired within a loop iteration (e.g., line 33) must
also be released by the end of that iteration (line 47). We be-
lieve this restriction—which we inherit due to use of eBPF’s
existing loop analysis logic [30]—is reasonable because most
extensions do not acquire kernel-owned resources mono-
tonically. We did not require such a loop when offloading
Memcached, Redis, and five data structures using KFlex.

3.2 Memory Safety Using Lightweight SFI

When an extension declares a heap, the KFlex runtime maps
the heap (aligned to its size) into the extension’s virtual ad-
dress space. The KFlex runtime initializes the KFlex mem-
ory allocator with per-CPU lists for each size class and a
global list for memory conservation akin to how user-space
allocators are initialized today. KFlex does not pre-allocate
physical memory for the entire heap at initialization, but
instead populates the page table entries corresponding to
the heap upon demand from the KFlex memory allocator.

Kie implements SFI, which “guards” [74] all pointer deref-
erences in the extension code and ensures they access mem-
ory within heap bounds. This guarding mechanism is similar
to other SFI implementations [74, 79] and involves two steps.
First, KFlex masks the pointer’s address, keeping only the
bits needed to offset into the heap correctly. Next, KFlex
calculates a sanitized address by adding the heap’s starting
address as a base. This ensures the sanitized address is safe,
as the heap is aligned to its size.

As an example of how Kie’s guarding mechanism works,
consider a heap of size 256 bytes mapped between addresses
256 and 511 in the extension’s virtual address space, and an
unsafe pointer pointing to address 524. The masking step
will zero out all but the lower 8 bits (since 28 = 256), resulting
in the value of 12. This masked address is then added to the

Listing 1 Example KFlex extension, implementing a key-
value store backed by a linked list.
1 struct elem { // Linked list structure
2 int key;
3 int value;
4 struct elem *next, *prev;
5 };
6
7 kflex_heap(16); // 16 GB heap allocation
8 struct elem *head; // Linked list head
9 kflex_spinlock_t lock; // Lock used to protect the linked list
10
11 SEC("xdp")
12 int prog(struct xdp_md *ctx) {
13 struct bpf_sock_tuple tup;
14 struct bpf_sock *sk;
15 int proto, key;
16
17 if (!check_ipv4_udp(ctx)) // Check XDP packet type
18 return XDP_DROP;
19 // Initialize tuple for lookup from the XDP packet
20 init_sock_tuple(ctx, &tup);
21
22 // Extract the key of the request from the XDP packet
23 key = get_key(ctx);
24 kflex_spin_lock(&lock);
25
26 struct elem *e = head;
27 while (e != NULL) {
28 if (e->key != key) {
29 e = e->next;
30 continue;
31 }
32 // Only handle packets for existing UDP sockets
33 sk = bpf_sk_lookup_udp(ctx, &tup, sizeof(tup.ipv4), 0, 0);
34 if (!sk)
35 break;
36 // Extract the type of request from the XDP packet
37 switch (get_request_type(ctx)) {
38 case 0: // Update value for the element
39 // Extract value from XDP packet, and store it
40 e->value = get_value(ctx);
41 break;
42 case 1: // Delete element from linked list, and free it
43 list_delete(head, e);
44 kflex_free(e);
45 break;
46 }
47 bpf_sk_release(sk);
48 break;
49 }
50
51 kflex_spin_unlock(&lock);
52 return XDP_DROP;
53 }

heap’s base address (256), leading to safe access at memory
address 268. Note that if the pointer was originally within the
heap, this sanitization process does not change the address.

We chose to sanitize heap accesses using address masking,
as opposed to trapping and canceling extensions upon an
out-of-bounds access since the former is known to provide
better performance [54, 72]. This is because address masking
can typically be optimized down to one hardware instruction
(§4.2) while trapping and canceling requires extra hardware
instructions for each access sanitization. Since kernel safety
does not require any semantic guarantees on accesses to
extension-owned memory, we chose the SFI scheme that
provides better performance in KFlex.

5

KFlex further reduces the overhead of SFI by leveraging
the eBPF verifier’s taint and range analysis to elide guards
when heap accesses are provably safe. Leveraging the ver-
ifier’s range analysis is particularly useful as it can ensure
safety in cases where pointers are manipulated by adding or
multiplying scalar values. Such scalar pointer manipulations
are common in systems code, especially when accessing
different fields within a struct.
Finally, KFlex’s SFI also supports a “performance mode”

that allows practitioners to trade off confidentiality for im-
proved performance. In performance mode, KFlex does not
sanitize read instructions, which reduces overhead but leads
to a loss of confidentiality because extensions can read ar-
bitrary kernel memory. Performance mode does not impact
safety guarantees since writes are always sanitized, and reads
that lead to page faults will trigger cancellations (§3.3).

We envision performance mode being used by practition-
ers who deploy extensions in a trusted environment. Exam-
ples of such scenarios include in-kernel tracing and observ-
ability contexts [12], as well as extensions deployed by a
privileged user [68], which is the most common deployment
scenario for eBPF-based extensions today.

3.3 Safe Termination Using Extension Cancellations

Enforcing safe termination requires aborting extensions after
a pre-determined quantum and restoring the kernel to a
quiescent state (i.e., a state where invariants on kernel-owned
memory and objects are satisfied) so that the system can
make forward progress.

KFlex introduces extension cancellations: a mechanism
that terminates long-running extensions and safely releases
any kernel-owned objects acquired by the extension (e.g.,
reference counters, locks) upon termination, to comply with
kernel invariants. When combined with automated verifi-
cation of kernel-interface compliance—which guarantees
that accesses to kernel-owned memory comply with kernel
invariants—-extension cancellations ensure that KFlex re-
stores the kernel to a quiescent state when an extension’s
execution is terminated. Note that KFlex only guarantees
that the kernel is restored to a quiescent state from which
it can make forward progress. It does not do the same for
forcibly terminated (and thus incorrect) extensions.
For each extension, KFlex defines a set of cancellation

points (Cps), which represent the instructions in the exten-
sion code at which it will terminate the extension if required.

Cps consists of two classes. Class 1 (𝐶1) consists of all back
edges of loops in the extension code for which termination
cannot be guaranteed statically (line 49 in Listing 1). These
represent scenarios where extensions might run indefinitely
and hence might need to be forcibly terminated. Class 2
(𝐶2) consists of accesses to the extension heap (lines 28, 29,
and 40). Canceling the extension at all such accesses may
be necessary because, although the SFI ensures that heap
accesses are within bounds, it does not guarantee that the

page being accessed has a valid physical address since that
would require pre-allocating physical memory for the entire
heap. Note that all Cps are defined in the extension code
itself. Extensions are not terminated while executing trusted
kernel helper functions. This ensures that KFlex does not
have to rollback partial execution of kernel code upon a
termination.
Under the covers, KFlex reduces the two classes of Cps

into one by adding a heap access to the back edges in𝐶1. For
example, KFlex instruments the back edge of a potentially
non-terminating loop, such as while (node.next != NULL),
by inserting a heap access (*terminate) in its body before
the back edge, where terminate is a valid heap address. Spin
locks implemented in extensions with a potentially non-
terminating loop (e.g. in case of deadlocks) will be treated
similarly. The accessed heap location contains a valid address
for all back edges initially.
To ensure that the runtime can safely terminate the ex-

tension at Cps, Kie computes a unique object table for each
Cp. This object table records the stack locations and regis-
ters holding kernel-owned objects acquired by the extension
when the Cp is executed and thus represents the resources
that must be safely released in case the extension is forcibly
terminated at the Cp. In Listing 1, Cps at lines 28 and 29 will
have no object tables as no kernel resources are held at those
points. However, the Cp at line 40 will have an object table
with an entry for the socket object acquired at line 33 with
its corresponding destructor (bpf_sk_release).

KFlex relies on the eBPF verifier’s symbolic execution
to compute object tables. Since an extension can only ac-
quire and release kernel resources via helper functions with
well-defined semantics, KFlex can precisely track the set
of resources held by the extension at each Cp, as well as
the destructor required to release these resources upon a
forcible termination. Since KFlex requires all loop iterations
in extension code to release any kernel resources acquired
during the same iteration, the object table for each Cp is also
independent of the number of loop iterations executed and
thus can be uniquely determined. Note, there still exist pos-
sible corner cases in the computation of the object table due
to different sequences of non-loop branches leading to the
same Cp. We describe how KFlex addresses these cases in
(§4.3). Kie passes the computed tables to the KFlex runtime
along with the instrumented bytecode.

To enforce cancellations for long-running loops, the KFlex
runtime monitors how long an extension has been executing
for and zeroes out the address (terminate) used for the heap
access added to loops when the execution time exceeds the
desired quantum. This results in the extension raising an
exception at the Cp corresponding to the long-running loop.
The KFlex runtime catches this exception and then releases
all kernel-owned objects acquired by the extension before
aborting the program. To correctly release kernel-owned
objects, the KFlex runtime steps through the unique object

6

table corresponding to the Cp and calls the corresponding de-
structor for each object in the table. In scenarios where heap
accesses to unmapped memory (C2 Cps) raise an exception,
the runtime terminates the extension as above, i.e., it catches
the exception and releases all acquired kernel resources using
the object table.

Thus, by statically analyzing the kernel resources acquired
by an extension, KFlex is able to guarantee safe termination
at near-zero runtime overhead for correct extensions (i.e.,
extensions that terminate on their own). Specifically, KFlex’s
only runtime overhead for correct extensions comes from
the additional heap access performed (*terminate) at every
loop iteration. In our experience, this overhead is negligible
since *terminatewill typically be in the CPU’s L1 cache due
to its repeated use [46].

3.4 Low Overhead Communication with User Space

We now describe how KFlex enables low-overhead com-
munication between extensions and user-space applications.
KFlex provides such a communication channel since modern
applications are growing increasingly complex and cannot
always be entirely offloaded using kernel extensions [42, 67].

KFlex enables user-space code to request extension heaps
be mapped into their address space, thus providing direct
and transparent access to all extension state through virtual
memory and eschewing system calls.
Providing such direct access to extension state requires

overcoming two key challenges. First, merely mapping the
heap into the extension and user address space is not suffi-
cient, as all references to memory must point to the right
addresses. For example, consider a linked list that both the
extension and user-space application walk by accessing a
pointer to the linked list structure residing in the shared heap.
When this pointer is communicated by the extension to the
application, it will be a pointer in the extension’s address
space, and will likely lead to a page fault when accessed in
user space.
The second challenge involves ensuring the safe shar-

ing of mutable state between user-space applications and
extensions. While both user space and extensions can use
synchronization mechanisms, such synchronization is made
more complex since extensions running in the kernel can
preempt their user-space counterparts at any point. For ex-
ample, an extension can preempt its user-space counterpart
in the middle of a critical section and attempt to acquire
the same lock, leading to a deadlock. Although extension
cancellations ensure that such extensions will eventually be
terminated, such deadlocks will likely lead to significantly
worse application performance.

To address the first challenge, Kie translates pointers to
the shared heap into a valid user-space address whenever
they are stored. This translation is similar to sanitization, but
the base address is adjusted to point to the location where the
shared heap is mapped in the application’s virtual address

space. This translation does not affect extension correctness
because the address is checked the next time it is derefer-
enced in the extension. KFlex allows developers to disable
the “translate on store” feature. Disabling it reduces the run-
time overhead of the extension, which can be beneficial for
performance-critical paths. However, developers will need to
modify their applications to handle the translation of stored
accesses in user space. While KFlex supports this alternative,
in this work, we focused on running unmodified user-space
applications and hence perform the translation on stores in
the extension code.

To address the second challenge, KFlex enables user-space
applications to request a temporary time slice extension,
similar to Symunix [38], when holding a spin lock that an
extension might also acquire. This approach works well in
practice because spin lock critical sections are typically short,
and thus a single time slice extension—which we set to 50μs—
usually suffices for the application to complete the critical
section. Once the additional time slice expires, the applica-
tion is forcefully preempted, ensuring forward progress of
the system.

In scenarios where a non-cooperative user-space process
does not release the lock and is forcefully preempted, ex-
tensions in the kernel waiting on the lock will initially con-
tinue to spin waiting for it. However, these extensions will
eventually be canceled by KFlex’s extension cancellation
mechanism. When such a cancellation occurs, the KFlex
runtime unloads the extension from the kernel but does not
destroy the extension heap, as it may be used for backing
allocations in the user-space application. The extension heap
is de-allocated only when the application closes the heap file
descriptor explicitly or when the application terminates.

4 Implementation

We implement KFlex as part of the Linux kernel v6.9. In
total, we implement KFlex in 15k LoC, with 2.5k LoC for the
changes to the eBPF verifier and JIT, 8k LOC for implement-
ing the KFlex runtime, and a further 4.5k LoC for unit tests.
Our code passes all the tests in the eBPF test suite, ensur-
ing backward compatibility and no regressions for existing
extensions.

4.1 Extension Heaps

KFlex implements extension heaps as eBPF maps to allow
applications to reference and mmap() the heap using a file
descriptor object. KFlex creates heaps using the bpf(2) sys-
tem call [2], and the kernel allocates the heap in the vmalloc
[10] region with an alignment request equal to the size of the
heap. The KFlex runtime then maps this heap in user space,
before it loads the extension that will utilize this heap. This
allows the extension’s verification and JIT procedure to take
into account the base address of the user-space mapping,
which is used to concretize the address into the extension’s

7

JITed code for pointer translation. The physical memory
allocated for a heap is tracked as part of the application’s
memory cgroup [3]. This accounting ensures that any re-
source limits on the application also apply to the memory
allocated by its kernel extensions.
When allocating an extension heap, KFlex allocates two

guard pages on either side of the heap to ensure safety. We
choose the guard page size to be 32 KB (215) because eBPF
load and store instructions allow the addition of a signed
16-bit offset to a pointer loaded from a register [6]. These
offsets can range from -215 +1 to 215. The guard pages ensure
that any memory access performed by the extension remains
within the memory mapped to the extension’s address space.

Unfortunately, while such guard pages are necessary, they
cause fragmentation in kernel memory since KFlex’s SFI
requires heaps to be mapped to a location aligned to their
size for address translation to work. For example, assuming
two extensions each request a heap of size 4GB, the kernel
cannot map them into a contiguous region because the guard
pages of the first will force the kernel to skip the following
4GB chunk tomaintain alignment requirements.We describe
possible solutions to this fragmentation in §6.
Memory allocator. We implement the KFlex’s memory al-
locator backend in user space on top of jemalloc [8]. Objects
for the extension heaps are allocated using extent hooks API
for jemalloc arenas [1], where page allocations are served
from the extension heap mapped in user space instead of
mmap(). These are then forwarded to the per-CPU cache of
objects maintained for extensions to allocate memory (§3.2).
A user-space thread spawned by the KFlex runtimemonitors
and refills the per-CPU caches when they run low.
As a demonstration of KFlex’s flexibility, we implement

the kflex_malloc() and kflex_free() functions as KFlex
extensions. These extensions, which share data structures
with user space using the mechanisms in §3.4, enable
the KFlex memory allocator to respond to allocation/de-
allocation requests quickly, particularly if the allocation/de-
allocation can be served from the extension’s cache.

4.2 The KFlex SFI

The KFlex SFI efficiently implements address sanitization
for x86_64 as follows. To extract the offset bits from a heap
address, KFlex emits a single AND instruction. All accesses
(loads, stores, atomic RMWs) performed on the heap address
then use x86’s indexed addressing mode to access memory.
To avoid having to load the heap address mask and the heap
base address into x86 hardware register for each heap access,
KFlex reserves the unused x86 registers R12 and R9 (for the
eBPF ISA on the x86 target in Linux) to hold the base address
and mask respectively. Since R12 is a callee-saved register,
we modify the eBPF JIT to push it upon entry into the kernel
extension, and since R9 is caller-saved, we ensure that the

JIT reloads it with the mask each time a kernel or extension
function is invoked.
Performance mode. To ensure that un-instrumented reads
in performance mode cannot be used to read user-space
data—that is controlled by possibly malicious applications—
and steer the control flow of kernel extensions, KFlex relies
on the fact that extensions run with SMAP [76] enabled. As
a result, extensions will trap on accessing any user-space
address, leading to cancellation.

4.3 Extension Cancellations

Object table generation. To ensure that KFlex computes
unique object tables per Cp, we have to account for the case
where different types of kernel resources are present in the
same stack location or registers for a given Cp. Such a sce-
nario occurs when the program arrives at the same Cp via a
different sequence of non-loop branches, such that an entry
in the object table cannot accurately describe the disjunc-
tion of distinct kernel resources. We mitigate such cases
by spilling conflicting kernel resources upon acquisition to
unique stack locations in the frame. For all the extensions
we wrote for our evaluation and all the extensions in the
eBPF test suite in the kernel, we did not encounter such
code generation from the compiler. Nevertheless, KFlex still
addresses this corner case.
Monitoring execution duration. The KFlex runtime im-
plements passive watchdog-driven monitoring of extensions
at the granularity of seconds. We implement this by using
Linux’s softlockup and hardlockup watchdogs [16], which
enable us to keep track of stalls in interruptible and non-
interruptible eBPF extensions, respectively. For sleepable
eBPF extensions [29], the KFlex runtime spawns a back-
ground task that periodically wakes up and checks stalled
extensions that are blocking tasks in a sleepable context.
Returning control to the kernel. Upon completing stack
unwinding, KFlex returns a default error code to the kernel.
KFlex chooses the default value based on the kernel hook
where the extension is loaded; for instance, security exten-
sions must deny by default, and network extensions should
pass packets by default. KFlex also provides users with the
flexibility to attach a callback function to their extension that
modifies the returned error code to suit their needs. Natu-
rally, this callback function is restricted in terms of allowed
behavior; for instance, it cannot contain other cancellation
points (to avoid recursive cancellations), and cannot contain
unbounded loops.
Cancellation scope. Since the *terminate heap access
is shared by all invocations of an extension across CPUs,
cancellation on one CPU due to non-termination also leads
to termination of the same extension on other CPUs. We
made this policy decision to avoid running buggy extensions

8

inside the kernel. As future work, cancellations due to non-
termination can be scoped to individual invocations of an
extension on a given CPU, without affecting other CPUs.

4.4 Low Overhead Communication with User Space

KFlex implements time slice extensions by introducing a
counter in the rseq region [26, 32] and incrementing and
decrementing it on lock acquisition and release. Such a de-
sign ensures that nested locks are correctly accounted for.
In cases where the user-space task does not finish executing
the critical section in the allotted extension, KFlex forcefully
preempts it, which results in extensions waiting for the lock,
eventually stalling, and being canceled. We consider this
acceptable since we believe that KFlex’s only safety concern
is to ensure that the kernel’s integrity is maintained and
that it can continue making forward progress. Repairing the
execution of faulty applications is out of scope for KFlex.

4.5 Integrating KFlex into the Linux Kernel

Thus far, we have upstreamed several building blocks for
KFlex, such as initial support for cancellations in the ver-
ifier [34], and associated stack unwinding logic [33]. We
have also proposed upstream patches implementing object
table generation for cancellations [20], and performance
mode [36], which are under review. In parallel to our work,
Alexei Starovoitov contributed eBPF arenas [19] upstream,
which achieves feature parity with KFlex’s heaps, but sup-
ports a maximum of 4GB size due to a different SFI scheme.
We are actively migrating our extensions to arenas, and will
pursue integration of our SFI scheme and optimizations used
for KFlex heaps upstream to allocate arenas bigger than
4GB in size.

5 Evaluation

We evaluate KFlex by answering the following questions:

• Does KFlex deliver end-to-end performance benefits for
real-world applications? (§5.1)

• Does KFlex provide tangible flexibility benefits by en-
abling developers to offload new functionality to the ker-
nel? (§5.2)

• Does KFlex enable developers to co-design extensions
with user-space applications? (§5.3)

• Does KFlex’s co-design of runtime techniques with
eBPF’s verifier provide meaningful reductions in runtime
overhead? (§5.4)

Testbed: We use a testbed set up as per RFC 2544 [13] with
two directly connected machines: a server that runs KFlex or
the baselines and a client that runs a closed-loop load gener-
ator. Both machines are identical, with a 96-core (192-thread)
Intel Xeon Platinum 8468 CPU running at 2.30GHz, 512GB
of RAM, and an Intel X710 10 Gbps NIC. Both machines run
Ubuntu 24.04, with the server machine running our modified
version of Linux v6.9.

In all our experiments, the client machine runs a closed-
loop load generator with 64 threads and 16 clients per thread,
while the server runs KFlex or the baselines using 8 threads.
All measurements are performed at the client, ensuring end-
to-end evaluation of KFlex. Unless otherwise specified, we
use a key size of 32B and a value size of 64B for experiments
involving key-value lookups. The clients generate requests
according to a Zipfian access pattern with 𝑠 = 0.99. Each ex-
periment runs for 30 seconds, and we discard the first 10% of
samples to remove warm-up effects. We ran our experiments
for several minutes and obtained similar results.

5.1 Performance Benefits for Applications

A key use-case for kernel extensions today is the potential
performance benefits for the fast path of networked applica-
tions whose service times are approaching the microsecond-
scale [22, 63]. Hence, to evaluate KFlex’s performance bene-
fits, we use it to offload Memcached and Redis, two widely
deployed, microsecond-scale key-value stores.

Memcached. To offload Memcached with KFlex, we imple-
ment all the Memcached logic that parses incoming network
packets and processes GET and SET requests in a single
KFlex extension. This ensures that the KFlex-based Mem-
cached runs entirely in kernel space with no user-space
involvement. We attach the KFlex extension to the XDP
hook [44] (i.e., the Linux hook to process incoming ethernet
packets). Since SET requests in Memcached run over TCP,
we implement support in Linux to handle TCP’s fast path at
the XDP hook itself. Our KFlex-based Memcached consists
of approximately 2000 LoC.
We compare the performance of the KFlex-based Mem-

cached to two baselines: Memcached running in user space
(referred to as Memcached hereafter) and BMC [42]. BMC
is a recent research proposal that implements a look-aside
cache to handle only GET requests with eBPF. BMC preal-
locates memory in the kernel for its look-aside cache. BMC
does not offload SETs since processing SET requests requires
dynamic memory allocations, which vanilla eBPF does not
provide. In contrast, KFlex enables the offloading of both
SETs and GETs since developers can use the KFlex memory
allocator to allocate memory on demand.
We use three workloads to evaluate the performance of

KFlex-Memcached, each with a different ratio of GETs:SETs
(90:10, 50:50 and 10:90, respectively). Put together, these
workloads enable us to evaluate KFlex’s performance bene-
fits in read-heavy, mixed, and write-heavy scenarios, all of
which are common in production today [70, 77]. For each
workload, we set key and value sizes to be 32B each; we had
to reduce the value size since BMC does not support values
larger than their keys. For each workload, we measure the
throughput achieved by each system, along with the 99𝑡ℎ
percentile latency.

9

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

90:10 50:50 10:90
0

100
200
300
400
500
600
700

90:10 50:50 10:90

User space BMC KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

Ratio of GETS:SETS

p9
9
la
te
nc
y
(𝜇
s)

Ratio of GETS:SETS

Figure 2.Comparison ofMemcached (8 threads) performancewhen
offloaded using KFlex, eBPF and when run in user space.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

90:10 50:50 10:90
0

100

200

300

400

500

600

90:10 50:50 10:90

User space BMC KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

Ratio of GETS:SETS

p9
9
la
te
nc
y
(𝜇
s)

Ratio of GETS:SETS

Figure 3. Comparison of Memcached (16 threads) performance
when offloaded using KFlex, eBPF and when run in user space.

Figure 2 (a) illustrates KFlex’s throughput benefits for all
three workloads. We observe that KFlex-Memcached sus-
tains 1.23×-2.83× and 2.33×-3.01× higher throughput than
BMC and Memcached, respectively. KFlex’s improvements
over BMC only increase as the fraction of SETs increases be-
cause BMC offloads only GET requests. Meanwhile, KFlex’s
improvements over Memcached remain similar since the key
difference is that the former does not pay the overhead of
the Linux TCP stack or the cost of context switch.

Figure 2 (b) illustrates the 99𝑡ℎ percentile latency for each
workload for all three systems. We observe similar trends as
for throughput with KFlex-Memcached providing a 1.41×-
1.95× and 1.95×-9.35× lower tail latency than BMC andMem-
cached, respectively.
To demonstrate that KFlex’s performance benefits hold

irrespective of the number of threads used to run the appli-
cation, we repeat the above experiments with 16 threads for
each Memcached instance. Figure 3 depicts the results and
demonstrates that KFlex’s performance benefits are similar
despite the change in the number of threads.
Redis. To offload Redis, we implement the logic necessary to
parse requests and process SET, GET, and ZADD requests in
a single KFlex extension akin to Memcached. Since all of the
above request types run over TCP, we attach the extension
to the sk_skb hook (i.e., the Linux hook to process packets
once they have been processed by the transport layer). Our
implementation of Redis totals approximately 3100 LoC.

0

0.4

0.8

1.2

1.6

2

90:10 50:50 10:90
0

2

4

6

8

10

90:10 50:50 10:90

User space KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

Ratio of GETS:SETS

p9
9
la
te
nc
y
(m

s)

Ratio of GETS:SETS

Figure 4. Comparison of Redis performance when offloaded using
KFlex and when run in user space.

While user-space Redis is a single-threaded, KFlex-Redis
can run onmultiple threads in the kernel. So, to keep the com-
parison fair, we use a parallel version of Redis (KeyDB [9]) as
our user-space baseline. We retain the workloads and metrics
we used for Memcached to evaluate KFlex-Redis.

Figure 4 illustrates KFlex’s performance benefits for all
three workloads. We observe that KFlex-Redis sustains
1.61×-2.14× greater throughput than KeyDB while providing
0.97×–2.96× lower tail latency.
While KFlex’s performance benefits are significant (ig-

noring the outlier), they are lower for Redis in comparison to
Memcached. This difference is due to the corresponding ex-
tensions being attached to different hooks. Since Redis runs
SETs and GETs over TCP, while Memcached runs GETs over
UDP and SETs over TCP [42], all requests in KFlex-Redis
must traverse the Linux TCP stack before being processed
by the extension, resulting in reduced performance benefits.

Takeaway. Based on the above results, we conclude that
KFlex provides significant throughput and latency bene-
fits for low latency, microsecond-scale applications when
compared to running these applications in user space or
offloading them using eBPF.

5.2 Offloading New Functionality with KFlex

Recall that one of eBPF’s major limitations today is the lack
of support for extension-defined data structures. We now
demonstrate that KFlex overcomes this limitation and en-
ables developers to define complex data structures in their
extensions and offload functionality that critically depends
on such data structures.
Offloading new data structures. We use KFlex to imple-
ment a hash table, linked list, red-black tree, skiplist, and
two network sketches. Each data structure is defined entirely
within an extension and does not rely on the user space ap-
plication, even for initialization. All data structures except
the hash table are single-threaded, but adding support for
concurrent operations only requires further engineering.
We evaluate the performance of these data structures by

measuring the throughput and average latency for lookup,
delete, and update operations. We evaluate the throughput
and latency with and without performance mode enabled
(§4.2). As a baseline, we use an identical implementation

10

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
16.0
18.0

KM
od

:0
.0
16

KF
le
x-
PM

:0
.0
14

KF
le
x:
0.
01
3

KM
od

:0
.0
07

KF
le
x-
PM

:0
.0
07

KF
le
x:
0.
00
6

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0

Up
da
te

Lo
ok
up

De
let
e

0.0

100.0

200.0

300.0

400.0

500.0

600.0

Up
da
te

Lo
ok
up

De
let
e

0k
20k
40k
60k
80k
100k
120k
140k

Up
da
te

Lo
ok
up

De
let
e

KM
od

:6
3.
45
1

KF
le
x-
PM

:5
7.
03
4

KF
le
x:
58
.1
30

0k
2k
4k
6k
8k
10k
12k
14k
16k
18k

Up
da
te

Lo
ok
up

De
let
e

0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0

Co
un
tsk
etc
h

Co
un
tm
in

KMod KFlex-PM KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

(a) HashMap (b) RBTree (c) Linked List (d) Skip List (e) Sketch

La
te
nc
y
(n
s)

Figure 5. Comparison of single-threaded update, lookup, and delete operations’ performance for five data structures implemented in user
space and offloaded to the kernel using KFlex. Linked list update is a constant time operation while lookup and delete traverse the list of
64K elements.

0

0.1

0.2

Redis KFlex
0

0.1

0.2

0.3

0.4

Redis KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

p9
9
La
te
nc
y
(m

s)

Figure 6. Comparison of ZADD performance of Redis with the
KFlex-offloaded version that uses the skiplist data structure.

written as a kernel module (i.e., unsafe kernel code). This
baseline represents the maximum achievable performance
since it incurs zero runtime overheads. For uniformity, we
run each data structure in a single thread.
Figure 5 illustrates the performance of the KFlex-based

data structure offloads. We see that, on average, the KFlex-
offloaded data structures suffer a throughput overhead of 9%
throughput and a latency overhead of 31.7% when perfor-
mance mode is disabled. When performance mode is enabled,
we see that the latency overhead reduces by 3-4% for pointer-
chasing heavy data structures (linked list, skip list), 1-2% on
average for other data structures (hashmap, rbtree), and no
change for network sketches. Note, the KFlex-based imple-
mentations also pay the cost of inefficiencies in the eBPF
ISA, such as register pressure and poor implementations of
memcpy(). We believe this overhead can be reduced with ad-
ditional engineering, but (as we will show next) it may not
significantly impact end-to-end application performance.

Offloading ZADD processing in Redis. We now demon-
strate the value of KFlex’s added flexibility for application

developers by offloading the processing of ZADD requests to
our KFlex-offloaded Redis. The ZADD operation adds one or
more keys to a sorted set or updates the corresponding score
if the key already exists. Redis implements ZADD using a
combination of a hashmap and a skiplist. It uses the hashmap
to manage keys associated with requests, with the value in
the hashmap pointing to a skiplist. Note that ZADD poses a
significant challenge to KFlex’s flexibility since it requires
new data structures (i.e., a skiplist) to be allocated in the fast
path (whenever a new key is added to the hashmap)
Offloading ZADD using eBPF today is infeasible since

eBPF does not provide a skiplist implementation. In contrast,
KFlex provides the flexibility to offload ZADD while retain-
ing the above implementation. This is because developers
can not only define, iterate through and update a skiplist
from within the extension but also allocate it on demand
using KFlex’s memory allocator.

We evaluate the performance of KFlex’s implementation
of ZADD for Redis by comparing its performance with Redis
running in user space. We use the same setup to evaluate
performance but use only a single thread on the server since
Redis’ ZADD implementation acquires a global lock on the
hashmap for each operation.

Figure 6 illustrates KFlex’s performance benefits for both
throughput and 99𝑡ℎ percentile latency. We observe that
KFlex outperforms the user-space version by 1.65× and re-
duces the tail latency by 52.8%. These results demonstrate
that while implementing data structures using KFlex does in-
cur a small runtime cost, this cost pales in comparison to the
end-to-end performance benefits that KFlex’s extensibility
provides.

11

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

90:10 50:50 10:90
0

100
200
300
400
500
600
700

90:10 50:50 10:90

User space KFlex

Th
ro
ug

hp
ut

(M
O
ps
/s
ec
)

Ratio of GETS:SETS

p9
9
La
te
nc
y
(𝜇
s)

Ratio of GETS:SETS

Figure 7. Comparison of Memcached performance when co-
designed with KFlex versus running in user space.

Takeaway. Based on the above results, we conclude that
KFlex overcomes the most significant limitation of eBPF to-
day and allows developers to define, iterate through, update,
and even allocate data structures on demand from within a
kernel extension.

5.3 Co-designing Extensions with User-Space Appli-

cations

We now demonstrate how developers can use KFlex to co-
design extensions with code running in user space. Such
co-design enables application threads running in user space
and extensions to work in tandem to handle different types
of scenarios. For instance, a common design philosophy is to
execute auxiliary functions that perform some non-critical
tasks sporadically (e.g., garbage collection, lazy resource ac-
counting and statistics generation). These tasks are often
ignored in benchmarks but are necessary when running
applications in production.

As an example of co-design, we describe the implementa-
tion of garbage collection forMemcached. Garbage collection
is a background operation that involves removing objects
from the cache either when its occupancy has crossed a cer-
tain threshold or when an object has expired. By default,
Memcached performs garbage collection every 1s. Given
this infrequent operation, offloading garbage collection to
the kernel is sub-optimal since it will take crucial CPU time
away from applications, given its higher privilege level.

KFlex allows developers to run garbage collection in user
space while offloading Memcached’s fast path to the ker-
nel using shared pointers (§3.4). These pointers let garbage
collection threads access Memcached’s hash table, which
is defined in the extension’s heap. Without shared point-
ers, Memcached would need to run entirely in user space to
support garbage collection.

We use KFlex to implement a version of Memcached that
performs garbage collection as follows: Garbage collection is
performed using user-space threads that wake up every 1s,
while the fast path logic is identical to the implementation
we used to evaluate Memcached performance for GETs and
SETs. We use spin locks to synchronize accesses to shared
state.We could not rely onmutexes since the fast path, which
runs in the kernel, cannot sleep.

Function Total number of guard insns. Guards elided

Linked list update 4 4 (100%)
Linked list lookup 1 1 (100%)
Linked list delete 2 2 (100%)
Hashmap update 10 8 (80%)
Hashmap lookup 2 0 (0%)
Hashmap delete 4 3 (75%)
RBTree update 16 16 (100%)
RBTree lookup 2 2 (100%)
RBTree delete 31 27 (87%)
Skiplist update 15 10 (66%)
Skiplist lookup 3 2 (66%)
Skiplist delete 9 4 (44%)

Table 3. Reduction in guard instructions emitted by the KFlex SFI
due to guarantees provided by the eBPF verifier’s range analysis.
We do not show numbers for the two network sketches since the
safety of all memory accesses in the sketch can be verified statically.

We compare the performance of our co-designed Mem-
cached with Memcached running in user space using the
same workloads we used in §5.1.
Figure 7 presents KFlex’s performance benefits for both

throughput and 99𝑡ℎ percentile latency. We observe that
KFlex continues to outperform the user-space version and
provides 2.2–2.9× improvement in throughput and reduces
the tail latency by 42.8%–89.5% reduction in tail latency
across the three workloads.
These results are as expected. The improvement in

throughput drops slightly (was 2.33×-3.01× without garbage
collection) since the fast path now occasionally contends
with the slow path when accessing the same hash table.
While this contention occurs in user-space Memcached too,
the impact is less significant since its overall service time is
much longer. Similarly, the improvement in tail latency is
also reduced (it was 1.95×-9.35× without garbage collection).
This reduction is more significant, but it is understandable
since contention over the shared hash table leads to similar
latency spikes in both user space and the kernel.
Takeaway. Based on the above results, we conclude that
KFlex’s shared pointers and translation mechanism enables
users to co-design applications with their extensions, and
reap the performance benefits of kernel offloads even in
production scenarios where auxiliary functionality such as
garbage collection and logging are necessary.

5.4 Does Verification Reduce SFI Overhead?

Finally, we demonstrate the benefits of co-designing KFlex’s
SFI with eBPF’s static verifier. To do so, we measured the
number of SFI guard instructions elided due to the verifier’s
range analysis for the update, lookup, and delete operations
on each data structure. We do not include guard instructions
emitted on forming a new heap pointer in the total, as those
must not be optimized away. Since each guard instruction is
identical, the number of guard instructions elided serves as
a proxy for the reduction in performance overhead.

12

Table 3 details the results. We observe that the verifier’s
range analysis elides 76% of the guard instructions emitted
on pointer manipulation on average across all data structures
and elides 100% for several data structure operations as well.
The guard instructions that the range analysis cannot elide
are typically those for which the size of the scalar added to
the pointer may be larger than the heap size. Nevertheless,
we see that co-designing KFlex’s SFI with the verifier is
crucial for achieving low runtime overhead.

Evaluation summary. In our evaluation, we demonstrate
that KFlex not only provides significant end-to-end perfor-
mance benefits for applications with stringent performance
requirements (e.g., Memcached and Redis) but also provides
tangible flexibility benefits by enabling developers to define
and use their own data structures in extension code, and thus
offload functionality that cannot be offloaded to Linux to-
day. We then demonstrate the extent of KFlex’s flexibility by
showing how it enables developers to co-design extensions
with user-space applications and thus accommodate auxil-
iary functionality necessary in production while retaining
the performance benefits of kernel offloads. Finally, we show
how co-designing KFlex’s runtime mechanisms is crucial to
its low runtime overhead and overall performance benefits.

6 Discussion

What we would like to change about eBPF.

Register pressure. The low register count in the eBPF
ISA [7] limits the number of native hardware registers avail-
able for use by extensions after JIT. This leads to greater
register pressure for code written in extensions. While the
performance downsides are less pronounced on x86_64, they
can be significant for other architectures with no shortage
of registers, such as ARM64.
SIMD instructions. Currently, eBPF does not provide

access to vector instructions. This does not make a difference
in the context of the Linux kernel (as SIMD instructions are
disallowed in kernel mode) but could lead to a significant
performance overhead on other OSes. That said, the eBPF
ISA can be extended with support for vector instructions
and FPU state save/restore can be done around extension
execution to allow their use.

eBPF memory model. eBPF currently lacks a formal
memory model, which hurts the portability and mainte-
nance of synchronization primitives written as extensions.
In KFlex, we follow the Linux Kernel Memory Model [69] at
source level, and rely on implementation details of the x86
eBPF JIT for correct code translation. We plan on following
the existing effort to introduce an eBPF memory model [55],
and adopting it upon standardization.
KFlex’s flexibility limitations due to Linux’s interface.

In comparison to OSes designed for extensibility from the
ground up (e.g., SPIN [23], Singularity [45]) Linux exposes

a much more restricted interface to eBPF-based extensions.
This restricted interface is understandable since eBPF was
retrofitted to the Linux kernel. However, it does have flexibil-
ity limitations; for example, one of SPIN’s canonical examples
was being able to offload a web server into the kernel; this is
currently infeasible using eBPF (or KFlex) since Linux does
not permit extensions to read files or perform blocking I/O.

That said, we believe that these limitations are not funda-
mental. First, due to eBPF’s growing popularity, the Linux
kernel is incrementally widening the interface it exposes
to eBPF extensions [37, 43, 50]. Second, while the design of
KFlex in this paper is Linux centric, we think the key in-
sight of combining static bytecode verification with runtime
mechanisms applies broadly.
Possible alternate designs for KFlex.

Stacking safety properties.While this work addresses
the safety of the kernel where extensions are deployed, it
does not address functional correctness and memory safety
of extensions themselves (e.g. in their own heap). We be-
lieve our design’s clear separation of concerns in terms of
its responsibilities (i.e. kernel safety) allows for a more flex-
ible approach of achieving stronger safety and functional
correctness for extensions. For instance, KFlex extensions
written in Rust (as supported by eBPF) would have stronger
intra-heap memory safety guarantees than the ones writ-
ten in C. Such an approach allows composition of diverse
toolchains and frameworks to stack various safety proper-
ties for an extension’s functional behavior on top of kernel
safety guarantees provided by KFlex. As a future direction,
we will explore integrating verification toolchains, such as
Dafny [4], with eBPF’s LLVM backend to compose provably
correct kernel extensions.
Faster extension stall recovery. The watchdog-driven

cancellation approach used by KFlex (§4.3) operates at
second-granularity to detect non-terminating extensions,
which may not be ideal for some users. Similar mecha-
nisms are used in existing virtual machine runtimes (e.g.,
WebAssembly), such as runtime metering [11], and epoch-
based interruption. We chose against runtime metering, as
it requires pervasive instrumentation of the extension to ac-
count for instructions executed at runtime, and would cause
prohibitive runtime overhead. Epoch-based or timer-based
interruption is not always applicable for kernel extensions,
which run in interrupt-disabled contexts. Thus, as future
work, we will explore alternative mechanisms such as time
sampling using hardware clocks in extensions at loop back
edge Cps to expedite recovery time and operate at sub-second
time scales.

Scaling heap regions. Alignment constraints on the vir-
tual addresses of heaps limit the number of maximum heap
regions (§4.1). We plan to explore heap domain striping [60],
where Intel MPK is used to mark adjacent heap domains

13

with distinct protection keys and eliminate guard pages to
perform dense packing of regions with the same size.

7 Related work

VINO Transactions. VINO provides support for aborting
grafts (or extensions) using a transactional runtime mecha-
nism. At first glance, these transactional semantics suggest
stronger safety guarantees compared to KFlex, specifically
three of the four ACID properties: atomicity, consistency,
and isolation [66]. However, the interpretation of these prop-
erties in VINO diverges from their conventional definitions
in database systems. In VINO, extensions interact with and
modify kernel data through accessors, but these accessors
do not stage their mutations. Instead, all side effects take
immediate effect and are visible throughout the system be-
fore the transaction is committed. As a result, atomicity and
isolation apply only between aborts and individual accessor
calls. Consistency in this context ensures that aborting after
an accessor call does not violate kernel invariants. Accessors
that require explicit actions to restore the kernel state log
their changes in an ‘undo log,’ ensuring that all entries are
processed upon transaction abort. Once a transaction com-
mits, the ‘undo log’ is discarded. This mechanism is used
to release acquired kernel resources and locks upon aborts.
Therefore, as detailed in §3.3, KFlex’s extension cancellations
provide equivalent safety guarantees to VINO’s transactions.
Safe Kernel Device Drivers. Many existing systems have
proposed fault isolation techniques for kernel extensions
in the context of device drivers. Nooks [71] achieves isola-
tion for device drivers through hardware page protection
mechanisms, but incurs high overhead. BGI [25] combines
static analysis with runtime checks, but is not tailored to
the narrow interface of kernel extensions. Thus, it incurs
performance overhead due to an increase in runtime checks
for memory and type safety, since extension memory is not
separated from kernel memory. SafeDrive [85] is similar, but
provides weaker isolation and temporal safety than BGI.
Moving Kernel Functionality into User Space. An alter-
native approach to extension safety is to run extensions in
user space to restrict their permissions. This approach, which
minimal kernels such as the Exokernel [39] and microkernel-
based systems [18, 52] implement, has the advantage of en-
suring flexibility, since user-space applications need not be
constrained to specific programming models. We believe
such approaches are particularly suited to platforms such
as embedded and mobile devices where minimal kernels are
primarily used [15, 51]. However, since the cloud relies al-
most exclusively on monolithic OSes today, we design for
KFlex for such OSes.
Software Fault Isolation. Our approach of SFI is inspired
by the seminal work of Wahbe et al. [74], which used guard

sequences utilizing bitwise math and use of reserved hard-
ware registers to optimize code instrumentation. Since then,
subsequent research work has made improvements to the
implementation, instrumentation, and mechanisms used for
SFI enforcement, such as PittSFIeld [53, 54] and XFI [40].
Projects such as Google’s NaCl [80] have demonstrated the
use of segmentation to sandbox arbitrary code, but are lim-
ited by the sandbox size due to use of segmentation registers.
KFlex takes inspiration from SFI systems that integrate veri-
fication with runtime checks [48, 59, 82], and co-design both
together to improve correctness and reduce overhead.
Heaps for BPF. There have been related efforts at approxi-
mating heap abstractions for eBPF extensions. Barret Rhoden
constructed makeshift heaps out of BPF array maps [65] and
used bounds checking to construct data structures. Alexei
Starovoitov implemented eBPF arena [19], which has a 4GB
bound on size, and utilizes pointer manipulation using 32-bit
operations as its SFI scheme.

8 Conclusion

In this paper, we presented KFlex, a safe kernel extension
framework that strikes an improved balance between flex-
ibility, performance and practicality. KFlex achieves this
balance by separating how the two properties that comprise
safety are enforced. Specifically, it relies on static bytecode
verification to guarantee that extensions conform to the ker-
nel’s interface, and runtime mechanisms co-designed with
verification to ensure that they access their own memory
safely and provably terminate.
We design and implement KFlex in the context of the

Linux kernel and build on top of the eBPF framework.
KFlex’s key technical contributions include runtime tech-
niques that are co-designed with eBPF’s static verification
to ensure particularly low overhead for extensions. Our eval-
uation demonstrates that KFlex provides significant perfor-
mance benefits for real applications and enables users to
offload new functionality to Linux without having to learn
and use specific programming languages and toolchains. Sev-
eral of KFlex’s proposed mechanisms have been upstreamed
into the Linux kernel mainline with an ongoing effort for
full integration.

9 Acknowledgments

We thank our shepherd Andrew Quinn, as well as the anony-
mous reviewers for their feedback that greatly improved the
paper. We also thank Barret Rhoden, Paul Chaignon, Shravan
Narayan, Aurojit Panda, and James Larus for their feedback
on drafts of the paper at various stages. Finally, we thank
Alexei Starovoitov, Eduard Zingerman, and other eBPF main-
tainers for their feedback on our patches submitted to the
Linux kernel. This work is supported by the SNSF project
grant 212884 and, in part, by the eBPF Foundation.

14

References

[1] Jemalloc Arena Extent Hooks. https://jemalloc.net/jemalloc.3.html#
arena.i.extent_hooks.

[2] bpf(2) — Linux Manual Page. https://man7.org/linux/man-pages/
man2/bpf.2.html.

[3] CGroup v2. https://docs.kernel.org/admin-guide/cgroup-v2.html.
[4] The Dafny Programming and Verification Language. https://dafny.

org/dafny/.
[5] Making eBPF work on Windows. hhttps://cloudblogs.microsoft.com/

opensource/2021/05/10/making-ebpf-work-on-windows/.
[6] eBPF Instruction Manual. https://docs.kernel.org/bpf/standardization/

instruction-set.html#basic-instruction-encoding.
[7] eBPF Instruction Set Specification, v1.0. https://docs.kernel.org/bpf/

standardization/instruction-set.html.
[8] Jemalloc. https://jemalloc.net.
[9] KeyDB. https://docs.keydb.dev/.
[10] Linux Virtual Memory Map for x86_64. https://www.kernel.org/doc/

Documentation/x86/x86_64/mm.txt.
[11] Metering in WASM. https://ewasm.readthedocs.io/en/mkdocs/

metering/.
[12] Linux Observability. https://www.oreilly.com/library/view/linux-

observability-with/9781492050193/ch04.html.
[13] Benchmarking Methodology for Networking Interconnect Devices.

https://www.ietf.org/rfc/rfc2544.txt.
[14] The Rust Programming Language. https://www.rust-lang.org/.
[15] seL4. https://en.wikipedia.org/wiki/L4_microkernel_family#High_

assurance:_seL4.
[16] Softlockup detector and hardlockup detector. https://docs.kernel.org/

admin-guide/lockup-watchdogs.html.
[17] The State of eBPF, 2024. https://www.linuxfoundation.org/hubfs/eBPF/

The_State_of_eBPF.pdf.
[18] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A New Kernel Foundation For UNIX Development.
1986.

[19] D. Alden. A proposal for shared memory in BPF programs, 2024.
https://lwn.net/Articles/961941.

[20] D. Alden. Cleaning up after BPF exceptions, 2024. https://lwn.net/
Articles/969185/.

[21] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ranganathan. Attack
of the Killer Microseconds. Communications of the ACM, 2017.

[22] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Symposium on Operating

Systems Design and Implementation, 2014.
[23] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,

D. Becker, C. Chambers, and S. J. Eggers. Extensibility, Safety and
Performance in the SPIN Operating System. In Proceedings of the

Fifteenth ACM Symposium on Operating System Principles, 1995.
[24] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and R. Agarwal. To-

wards 𝜇s tail latency and terabit ethernet: disaggregating the host
network stack. In ACM SIGCOMM Conference, 2022.

[25] Castro, Miguel and Costa, Manuel and Martin, Jean-Philippe and
Peinado, Marcus and Akritidis, Periklis and Donnelly, Austin and
Barham, Paul and Black, Richard. Fast Byte-Granularity Software
Fault Isolation. In Proceedings of the ACM SIGOPS 22nd symposium on

Operating systems principles, pages 45–58, 2009.

[26] J. Corbet. Restartable Sequences. https://lwn.net/Articles/650333/,
2015.

[27] J. Corbet. BPF at Facebook (and beyond). https://lwn.net/Articles/
801871/, 2019.

[28] J. Corbet. Concurrency management in BPF, 2019. https://lwn.net/
Articles/779120/.

[29] J. Corbet. Sleepable BPF programs, 2020. https://lwn.net/Articles/
825415/.

[30] J. Corbet. Generic iterators for BPF, 2023. https://lwn.net/Articles/
926041/.

[31] J. Corbet. Red-black trees for BPF programs, 2023. https://lwn.net/
Articles/924128/.

[32] J. Corbet. User-space spinlocks with help from rseq(). https://lwn.net/
Articles/944895/, 2023.

[33] J. Corbet. Stack unwinding with exceptions in eBPF, 2023. https:
//lwn.net/Articles/938435/.

[34] K. K. Dwivedi. Exceptions in eBPF - Linux Plumbers Conference,
2023. https://lpc.events/event/17/contributions/1578/attachments/
1240/2521/Exceptions%20in%20BPF.pdf.

[35] K. K. Dwivedi. User-defined objects in eBPF, 2022. https://lore.kernel.
org/bpf/20221118015614.2013203-1-memxor@gmail.com/.

[36] K. K. Dwivedi. Zero overhead PROBE_MEM, 2024. https://lore.kernel.
org/bpf/20240619092216.1780946-1-memxor@gmail.com/.

[37] J. Edge. The FUSE BPF Filesystem, 2023. https://lwn.net/Articles/
937433/.

[38] J. Edler. Process Management for Highly Parallel Unix Systems. Forgot-
ten Books, 2016.

[39] D. R. Engler, M. F. Kaashoek, and J. W. O. Jr. Exokernel: An Operat-
ing System Architecture for Application-Level Resource Management.
In Proceedings of the Fifteenth ACM Symposium on Operating System

Principles, 1995.
[40] Erlingsson, Ulfar and Abadi, Martín and Vrable, Michael and Budiu,

Mihai and Necula, George C. XFI: Software Guards for System Ad-
dress Spaces. In Proceedings of the 7th symposium on Operating systems

design and implementation, pages 75–88, 2006.
[41] M. Fleming. A thorough introduction to eBPF, 2017. https://lwn.net/

Articles/740157/.
[42] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller. BMC: Accelerat-

ingMemcached using Safe In-kernel Caching and Pre-stack Processing.
In 18th USENIX Symposium on Networked Systems Design and Imple-

mentation, 2021.
[43] T. Heo. BPF Extensible Scheduler Class, 2022. https://lore.kernel.org/

bpf/20221130082313.3241517-1-tj@kernel.org.
[44] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Her-

bert, D. Ahern, and D. Miller. The eXpress Data Path: Fast Pro-
grammable Packet Processing in the Operating System Kernel. In
Proceedings of the 14th International Conference on Emerging Network-

ing EXperiments and Technologies, pages 54–66, 2018.
[45] G. C. Hunt and J. R. Larus. Singularity: Rethinking the Software Stack.

ACM SIGOPS Operating Systems Review, 2007.
[46] R. R. Iyer, M. Unal, M. Kogias, and G. Candea. Achieving Microsecond-

Scale Tail Latency Efficiently with Approximate Optimal Scheduling.
In Proceedings of the 29th Symposium on Operating Systems Principles,
2023.

[47] J. Jia, R. Sahu, A. Oswald, D. Williams, M. V. Le, and T. Xu. Kernel
extension verification is untenable. In Proceedings of the 19th Workshop

on Hot Topics in Operating Systems, 2023.

15

https://jemalloc.net/jemalloc.3.html#arena.i.extent_hooks
https://jemalloc.net/jemalloc.3.html#arena.i.extent_hooks
https://man7.org/linux/man-pages/man2/bpf.2.html
https://man7.org/linux/man-pages/man2/bpf.2.html
https://docs.kernel.org/admin-guide/cgroup-v2.html
https://dafny.org/dafny/
https://dafny.org/dafny/
hhttps://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
hhttps://cloudblogs.microsoft.com/opensource/2021/05/10/making-ebpf-work-on-windows/
https://docs.kernel.org/bpf/standardization/instruction-set.html#basic-instruction-encoding
https://docs.kernel.org/bpf/standardization/instruction-set.html#basic-instruction-encoding
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://jemalloc.net
https://docs.keydb.dev/
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://ewasm.readthedocs.io/en/mkdocs/metering/
https://ewasm.readthedocs.io/en/mkdocs/metering/
https://www.oreilly.com/library/view/linux-observability-with/9781492050193/ch04.html
https://www.oreilly.com/library/view/linux-observability-with/9781492050193/ch04.html
https://www.ietf.org/rfc/rfc2544.txt
https://www.rust-lang.org/
https://en.wikipedia.org/wiki/L4_microkernel_family#High_assurance:_seL4
https://en.wikipedia.org/wiki/L4_microkernel_family#High_assurance:_seL4
https://docs.kernel.org/admin-guide/lockup-watchdogs.html
https://docs.kernel.org/admin-guide/lockup-watchdogs.html
https://www.linuxfoundation.org/hubfs/eBPF/The_State_of_eBPF.pdf
https://www.linuxfoundation.org/hubfs/eBPF/The_State_of_eBPF.pdf
https://lwn.net/Articles/961941
https://lwn.net/Articles/969185/
https://lwn.net/Articles/969185/
https://lwn.net/Articles/650333/
https://lwn.net/Articles/801871/
https://lwn.net/Articles/801871/
https://lwn.net/Articles/779120/
https://lwn.net/Articles/779120/
https://lwn.net/Articles/825415/
https://lwn.net/Articles/825415/
https://lwn.net/Articles/926041/
https://lwn.net/Articles/926041/
https://lwn.net/Articles/924128/
https://lwn.net/Articles/924128/
https://lwn.net/Articles/944895/
https://lwn.net/Articles/944895/
https://lwn.net/Articles/938435/
https://lwn.net/Articles/938435/
https://lpc.events/event/17/contributions/1578/attachments/1240/2521/Exceptions%20in%20BPF.pdf
https://lpc.events/event/17/contributions/1578/attachments/1240/2521/Exceptions%20in%20BPF.pdf
https://lore.kernel.org/bpf/20221118015614.2013203-1-memxor@gmail.com/
https://lore.kernel.org/bpf/20221118015614.2013203-1-memxor@gmail.com/
https://lore.kernel.org/bpf/20240619092216.1780946-1-memxor@gmail.com/
https://lore.kernel.org/bpf/20240619092216.1780946-1-memxor@gmail.com/
https://lwn.net/Articles/937433/
https://lwn.net/Articles/937433/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://lore.kernel.org/bpf/20221130082313.3241517-1-tj@kernel.org
https://lore.kernel.org/bpf/20221130082313.3241517-1-tj@kernel.org

[48] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. Mc-
Mullen, S. Savage, and D. Stefan. SFI safety for native-compiled Wasm.
In Proceedings of the 18th USENIX Symposium on Networked Systems

Design and Implementation (NSDI), Boston, MA, Feb. 2021.
[49] M. Kogias, R. Iyer, and E. Bugnion. Bypassing the Load Balancer

Without Regrets. In ACM Symposium on Cloud Computing, 2020.
[50] M. Lau. Overview of the BPF networking hooks and user experience

in Meta - Linux Plumbers Conference 2022. https://lpc.events/event/
16/contributions/1363/.

[51] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and
P. Levis. Multiprogramming a 64kB Computer Safely and Efficiently.
In Proceedings of the 26th Symposium on Operating Systems Principles,
2017.

[52] J. Liedtke. On micro-kernel construction. ACM SIGOPS Operating

Systems Review, 1995.
[53] S. McCamant and G. Morrisett. Efficient, Verifiable Binary Sandboxing

for a CISC Architecture. 2005.
[54] S. McCamant and G. Morrisett. Evaluating SFI for a CISC Architecture.

In USENIX Security Symposium, volume 10, pages 209–224, 2006.
[55] P. E. McKenney. BPF Memory Model. https://datatracker.ietf.org/

meeting/118/materials/slides-118-bpf-bpf-memory-model-00.
[56] Mellor-Crummey, JohnM and Scott, Michael L. Algorithms for Scalable

Synchronization on Shared-Memory Multiprocessors. ACM Transac-

tions on Computer Systems (TOCS), 9(1):21–65, 1991.
[57] S. Miller, K. Zhang, M. Chen, R. Jennings, A. Chen, D. Zhuo, and T. E.

Anderson. High Velocity Kernel File Systems with Bento. In 19th

USENIX Conference on File and Storage Technologies, 2021.
[58] S. Miller, A. Kumar, T. Vakharia, T. Anderson, A. Chen, and D. Zhuo.

Agile Development of Linux Schedulers with Ekiben. In Proceedings

of the Ninteenth EuroSys Conference, 2024.
[59] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan. RockSalt:

better, faster, stronger SFI for the x86. In Proceedings of the 33rd ACM

SIGPLAN conference on Programming Language Design and Implemen-

tation, pages 395–404, 2012.
[60] Narayan, Shravan and Garfinkel, Tal. Segue & ColorGuard: Optimizing

SFI Performance and Scalability on Modern x86. In The 17th Workshop

on Programming Languages and Analysis for Security, 2022.
[61] G. C. Necula and P. Lee. Safe kernel extensions without run-time

checking. SIGOPS Operating Systems Review, 30(SI):229–243, 1996.
[62] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt, E. Tor-

lak, and X. Wang. Hyperkernel: Push-Button Verification of an OS
Kernel. In Proceedings of the 26th Symposium on Operating Systems

Principles, 2017.
[63] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. E.

Anderson, and T. Roscoe. Arrakis: The Operating System is the Con-
trol Plane. In 11th USENIX Symposium on Operating Systems Design

and Implementation, 2014.
[64] A. Protopopov. BPF static keys, wildcard map, XXH3 Hash - LS-

F/MM/BPF, 2023. http://vger.kernel.org/bpfconf2023_material/anton-
protopopov-lsf-mm-bpf-2023.pdf.

[65] B. Rhoden. eBPF Shenanigans with Flux - Linux Plumbers Conference,
2023. https://lpc.events/event/17/contributions/1601/.

[66] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with Disaster:
Surviving Misbehaved Kernel Extensions. In Proceedings of the Second

USENIX Symposium on Operating Systems Design and Implementation,
1996.

[67] F. Shahinfar, S. Miano, G. Siracusano, R. Bifulco, A. Panda, and G. An-
tichi. Automatic Kernel Offload Using BPF. In Proceedings of the 19th

Workshop on Hot Topics in Operating Systems, 2023.
[68] A. Starovoitov. Introduce CAP_BPF. https://lwn.net/Articles/820560/,

2020.
[69] A. Stern. Linux Kernel Memory Model. https://github.com/

torvalds/linux/blob/master/tools/memory-model/Documentation/
explanation.txt.

[70] M. Sutherland, B. Falsafi, and A. Daglis. Cooperative Concurrency
Control for Write-Intensive Key-Value Workloads. In Proceedings of

the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, 2023.
[71] Swift, Michael M and Annamalai, Muthukaruppan and Bershad, Brian

N and Levy, Henry M. Recovering device drivers. ACM Transactions

on Computer Systems (TOCS), 24(4):333–360, 2006.
[72] Tan, Gang. Principles and Implementation Techniques of Software-

Based Fault Isolation. 1(3):19–20, 2017.
[73] H. Tao. Ternary Search Tree Proposal - BPF, 2022. https://lore.kernel.

org/bpf/20220331122822.14283-1-houtao1@huawei.com/.
[74] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient

Software-Based Fault Isolation. In Proceedings of the fourteenth ACM

symposium on Operating systems principles, 1993.
[75] Wikipedia. eBPF’s Adoption in Production, 2024. https://en.wikipedia.

org/wiki/EBPF.
[76] Wikipedia. Supervisor Mode Access Prevention. https://en.wikipedia.

org/wiki/Supervisor_Mode_Access_Prevention, 2024.
[77] J. Yang, Y. Yue, and K. V. Rashmi. A large scale analysis of hundreds

of in-memory cache clusters at twitter. In 14th USENIX Symposium on

Operating Systems Design and Implementation, 2020.
[78] R. Yang and M. Kogias. HEELS: A Host-Enabled eBPF-Based Load

Balancing Scheme. In Proceedings of the 1st Workshop on eBPF and

Kernel Extensions, eBPF 2023, New York, NY, USA, 10 September 2023,
2023.

[79] Z. Yedidia. Lightweight Fault Isolation: Practical, Efficient, and Secure
Software Sandboxing. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and

Operating Systems, 2024.
[80] Yee, Bennet and Sehr, David and Dardyk, Gregory and Chen, J Bradley

and Muth, Robert and Ormandy, Tavis and Okasaka, Shiki and Narula,
Neha and Fullagar, Nicholas. Native client: A Sandbox for Portable,
Untrusted x86 Native Code, 2010.

[81] A. Zaostrovnykh, S. Pirelli, R. R. Iyer, M. Rizzo, L. Pedrosa, K. J. Argy-
raki, and G. Candea. Verifying Software Network Functions with No
Verification Expertise. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles, 2019.
[82] L. Zhao, G. Li, B. De Sutter, and J. Regehr. Armor: Fully verified soft-

ware fault isolation. In Proceedings of the ninth ACM international

conference on Embedded software, pages 289–298, 2011.
[83] Y. Zhou, Z. Wang, S. Dharanipragada, and M. Yu. Electrode: Acceler-

ating Distributed Protocols with eBPF. In 20th USENIX Symposium on

Networked Systems Design and Implementation, 2023.
[84] Y. Zhou, X. Xiang, M. Kiley, S. Dharanipragada, and M. Yu. DINT:

Fast In-Kernel Distributed Transactions with eBPF. In 21st USENIX

Symposium on Networked Systems Design and Implementation, 2024.
[85] Zhou, Feng and Condit, Jeremy and Anderson, Zachary and Bagrak,

Ilya and Ennals, Rob and Harren, Matthew and Necula, George and
Brewer, Eric. SafeDrive: Safe and Recoverable Extensions Using
Language-Based Techniques. In Proceedings of the 7th symposium

on Operating systems design and implementation, pages 45–60, 2006.

16

https://lpc.events/event/16/contributions/1363/
https://lpc.events/event/16/contributions/1363/
https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00
https://datatracker.ietf.org/meeting/118/materials/slides-118-bpf-bpf-memory-model-00
http://vger.kernel.org/bpfconf2023_material/anton-protopopov-lsf-mm-bpf-2023.pdf
http://vger.kernel.org/bpfconf2023_material/anton-protopopov-lsf-mm-bpf-2023.pdf
https://lpc.events/event/17/contributions/1601/
https://lwn.net/Articles/820560/
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://github.com/torvalds/linux/blob/master/tools/memory-model/Documentation/explanation.txt
https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com/
https://lore.kernel.org/bpf/20220331122822.14283-1-houtao1@huawei.com/
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/EBPF
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention
https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Target Properties
	2.2 Prior Approaches to Safe Kernel Extensibility

	3 KFlex Design
	3.1 Programming Model
	3.2 Memory Safety Using Lightweight SFI
	3.3 Safe Termination Using Extension Cancellations
	3.4 Low Overhead Communication with User Space

	4 Implementation
	4.1 Extension Heaps
	4.2 The KFlex SFI
	4.3 Extension Cancellations
	4.4 Low Overhead Communication with User Space
	4.5 Integrating KFlex into the Linux Kernel

	5 Evaluation
	5.1 Performance Benefits for Applications
	5.2 Offloading New Functionality with KFlex
	5.3 Co-designing Extensions with User-Space Applications
	5.4 Does Verification Reduce SFI Overhead?

	6 Discussion
	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

