
Fast, Flexible, and Practical
Kernel Extensions

Kumar Kartikeya Dwivedi, Rishabh Iyer, Sanidhya Kashyap

● Mechanism to safely modify the kernel at runtime

Kernel extensions are critical

2

● Mechanism to safely modify the kernel at runtime

Kernel extensions are critical

3

● Mechanism to safely modify the kernel at runtime
● Used for observability, security, networking

Kernel extensions are critical

4

● Mechanism to safely modify the kernel at runtime
● Used for observability, security, networking
● Emerging use cases: Application offloads, CPU scheduling

Kernel extensions are critical

5

● Mechanism to safely modify the kernel at runtime
● Used for observability, security, networking
● Emerging use cases: Application offloads, CPU scheduling
● eBPF is 1% of all CPU cycles globally on Meta’s fleet

Kernel extensions are critical

6

Ideal extensibility goals

Safety: Cannot crash or stall the kernel

Flexibility: Allow diverse behavior in extension code

Performance: Low overhead on execution

Practicality: Language-independence

7

Ideal extensibility goals

Safety: Cannot crash or stall the kernel

Flexibility: Allow diverse behavior in extension code

Performance: Low overhead on execution

Practicality: Language-independence, compatibility

8

Ideal extensibility goals

Safety: Cannot crash or stall the kernel

Flexibility: Allow diverse behavior in extension code

Performance: Low overhead on execution

Practicality: Language-independence

9

Safety is fundamental for kernel extensions

Kernel extensibility today is either flexible or performant — not both

Problem Statement

10

KFlex: fast, flexible, and practical extension framework

11

Upstreamed into the Linux kernel mainline

Example use case: Memcached offload

12

NIC

Driver

Network stack

Memcached

Traditional model

Req Rsp

Example use case: Memcached offload

13

Cache

In-kernel lookaside cache1

NIC

Driver

Network stack

Memcached

Extended model

Get
req/rsp

Set
req/rsp

1BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI’21

NIC

Driver

Network stack

Memcached

Traditional model

Req Rsp

Lack of flexibility with eBPF

● Data structures cannot be shared
○ Wasted memory

14

Cache

NIC

Driver

Network stack

Memcached

Extended model

Get
req/rsp

Set
req/rsp

1BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI’21

● Data structures cannot be shared
○ Wasted memory

● No memory allocation
○ Only handle GETs

15

Cache

NIC

Driver

Network stack

Memcached

Extended model

Get
req/rsp

Set
req/rsp

1BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI’21

Lack of flexibility with eBPF

● Data structures cannot be shared
○ Wasted memory

● No memory allocation
○ Only handle GETs

● No user-defined data structures

16

Cache

NIC

Driver

Network stack

Memcached

Extended model

Get
req/rsp

Set
req/rsp

1BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI’21

Lack of flexibility with eBPF

● Data structures cannot be shared
○ Wasted memory

● No memory allocation
○ Only handle GETs

● No user-defined data structures

17

Cache

NIC

Driver

Network stack

Memcached

Extended model

Get
req/rsp

Set
req/rsp

Current extensibility approach to safety hurts flexibility

Lack of flexibility with eBPF

eBPF overview: linked list iteration

struct list_head *head; Linked list head
int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}

18

eBPF overview: linked list iteration

struct list_head *head; Linked list head
int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next; Linked list iteration
}

return bpf_redirect(...);

}

19

eBPF overview

20

1 Write extension code

eBPF

eBPF overview

21

Bytecode

1

2

Write extension code

Compilation

eBPF

eBPF overview

22

Bytecode Verifier

1

2 3

Write extension code

Compilation Verification

eBPF

eBPF overview

23

Bytecode Verifier

1

2 3

Write extension code

Compilation Verification

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kerneleBPF

eBPF overview

24

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

eBPF

eBPF overview

25

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

eBPF

eBPF: issues with current design

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}

26

Verifier

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kernel

eBPF: issues with current design

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}

27

Verifier

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kernel

eBPF: safety of kernel interfaces

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}

28

Verifier

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kernel

Problem statement

Kernel extensibility is either flexible, or performant — not both

29

KFlex

An extension framework for
arbitrary code extensibility

30

Insight: separate safety properties

Kernel helper calls, kernel-owned memory

31

Extension Correctness

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kernel

Kernel interface compliance

Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Flexibility is w.r.t extension memory & time

32

Kernel interface compliance

Extension CorrectnessExtension correctness

Kernel interface
- Kernel helper calls,

kernel objects

Memory safety
- No arbitrary or out of

bounds accesses

Termination
- Do not hang the kernel

KFlex: use dedicated mechanisms

● Kernel interface compliance: Narrow, well-defined

33

Static verification

KFlex: use dedicated mechanisms

● Kernel interface compliance: Narrow, well-defined

● Extension correctness: Diverse and arbitrary behavior

34

Static verification

Runtime checks

KFlex: use dedicated mechanisms

● Kernel interface compliance: Narrow, well-defined

● Extension correctness: Diverse and arbitrary behavior

35

Static verification

Runtime checks

Eliminate runtime overhead with co-design of runtime
checks and verification

KFlex overview

36

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

eBPF

KFlex overview

37

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

eBPF

Instrumentation
Engine

KFlex overview

38

Bytecode Verifier JIT

1

2 3 4

4

Write extension code

Compilation Verification Accept

Reject and notify user

KFlex
Runtime

eBPF

Instrumentation
Engine

Extension correctness with runtime checks

● Memory safety for extension-owned data

● Safe termination to ensure forward progress

39

Dedicated region for extension-owned
memory

● All extension data lives in heap
● Pages can be allocated and

deallocated on demand
● Surrounded by guard pages that

trap out-of-bounds accesses

Memory safety using sandboxing

40

G GHeap region

Guard pages

Memory safety using sandboxing

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}

41

G GHeap region

May be out of bounds

int prog(struct xdp_md *ctx) {

while (head != NULL) {

sanitize(head);

head = head->next;

}

return bpf_redirect(...);

}

Memory safety using sandboxing

42

G G

G GHeap region

Instrumentation
Engine

int prog(struct xdp_md *ctx) {

while (head != NULL) {

sanitize(head);

head = head->next;

}

return bpf_redirect(...);

}

Memory safety using sandboxing

43

G G

G GHeap region

Within bounds!

Extension cancellations

● Safely terminate an extension at a given point in bounded time

44

Safe termination using extension cancellations

● Find non-terminating loops

45

while (head != NULL) {

head = head->next;

}

Safe termination using extension cancellations

● Find non-terminating loops
● Instrument loop back-edges

46

while (head != NULL) {

head = head->next;

}

Safe termination using extension cancellations

● Find non-terminating loops
● Instrument loop back-edges
● Terminate and release kernel resources on a stall

47

while (head != NULL) {

head = head->next;

}

Safe termination using extension cancellations
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) {

 sanitize(head);

 head = head->next;

}

bpf_sk_release(sk);

return bpf_redirect(...);

}
48

void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) {

 sanitize(head);

 head = head->next;

 *terminate;

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Safe termination using extension cancellations

49

Instrumentation
Engine

Safe termination using extension cancellations
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) { Object Table

 sanitize(head);

 head = head->next;

 *terminate; P1

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

sk bpf_sk_release

50

Recovery of the kernel
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) {

 sanitize(head);

 head = head->next;

 *terminate;

}

bpf_sk_release(sk);

return bpf_redirect(...);

}
51

void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) {

 sanitize(head);

 head = head->next;

 *(NULL); Reset to NULL

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel

52

KFlex
Runtime

void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) {

 sanitize(head);

 head = head->next;

 *(NULL); Page fault!

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel

53

void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);

while (head != NULL) { Object Table

 sanitize(head);

 head = head->next;

 *(NULL); P1

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel

sk bpf_sk_release

54

Evaluation

55

● Can KFlex improve end-to-end performance for applications?

● Can KFlex enable flexibility with low overhead?

Memcached in XDP

56

Memcached in XDP

57

3x3x

Memcached in XDP

58

Allows both SETS/GETS

No memory waste
3x

Low overhead

Memcached in XDP

59

3x
Allows both SETS/GETS

No memory waste

Low overhead

KFlex enables significant throughput improvements

Allows both SETS/GETS

No memory waste

Low overhead

Data Structures

60

Th
ro

u
gh

p
u

t
(M

o
p

s/
s)

Hashmap

Skip list

Data Structures

61

7% throughput overhead

30% latency overhead

Offload arbitrary data structures

Th
ro

u
gh

p
u

t
(M

o
p

s/
s)

Hashmap

Skip list

Data Structures

62

7% throughput overhead

30% latency overhead

Offload arbitrary data structures

Th
ro

u
gh

p
u

t
(M

o
p

s/
s)

Hashmap

Skip list

Implement infeasible functionality at low overhead

More results in the paper!

63

Impact of co-designing runtime mechanisms with
verification

Throughput + latency numbers for Redis

Latency numbers for Memcached

KFlex: fast, flexible, and practical kernel extensions

● Separate kernel safety into two sub-properties
○ Use distinct, bespoke mechanisms to enforce each sub-property
○ Co-design runtime mechanisms with verification to reduce overhead

64

KFlex: fast, flexible, and practical kernel extensions

● Separate kernel safety into two sub-properties
○ Use distinct, bespoke mechanisms to enforce each sub-property
○ Co-design runtime mechanisms with verification to reduce overhead

● Integrated into the upstream Linux kernel

65
Project website

