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● Mechanism to safely modify the kernel at runtime
● Used for observability, security, networking
● Emerging use cases: Application offloads, CPU scheduling
● eBPF is 1% of all CPU cycles globally on Meta’s fleet

Kernel extensions are critical
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Performance: Low overhead on execution

Practicality: Language-independence
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Safety: Cannot crash or stall the kernel

Flexibility: Allow diverse behavior in extension code

Performance: Low overhead on execution

Practicality: Language-independence
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Safety is fundamental for kernel extensions



Kernel extensibility today is either flexible or performant — not both

Problem Statement
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KFlex: fast, flexible, and practical extension framework
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Upstreamed into the Linux kernel mainline



Example use case: Memcached offload
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Lack of flexibility with eBPF 

● Data structures cannot be shared
○ Wasted memory
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● Data structures cannot be shared
○ Wasted memory

● No memory allocation
○ Only handle GETs

● No user-defined data structures
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eBPF overview: linked list iteration 

struct list_head *head; Linked list head
int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}
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eBPF overview: linked list iteration

struct list_head *head; Linked list head
int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;  Linked list iteration
}

return bpf_redirect(...);

}
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eBPF overview
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eBPF overview
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eBPF: issues with current design

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}
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eBPF: safety of kernel interfaces

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}
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Problem statement

Kernel extensibility is either flexible, or performant — not both
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KFlex

An extension framework for
arbitrary code extensibility
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Insight: separate safety properties

Kernel helper calls, kernel-owned memory
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Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Flexibility is w.r.t extension memory & time
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Kernel interface compliance

Extension CorrectnessExtension correctness
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KFlex: use dedicated mechanisms

● Kernel interface compliance: Narrow, well-defined
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KFlex: use dedicated mechanisms

● Kernel interface compliance: Narrow, well-defined

● Extension correctness: Diverse and arbitrary behavior
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Static verification

Runtime checks

Eliminate runtime overhead with co-design of runtime 
checks and verification



KFlex overview
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KFlex overview
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Extension correctness with runtime checks

● Memory safety for extension-owned data

● Safe termination to ensure forward progress
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Dedicated region for extension-owned 
memory

● All extension data lives in heap
● Pages can be allocated and 

deallocated on demand
● Surrounded by guard pages that 

trap out-of-bounds accesses

Memory safety using sandboxing
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Memory safety using sandboxing

int prog(struct xdp_md *ctx) {

while (head != NULL) {

head = head->next;

}

return bpf_redirect(...);

}
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int prog(struct xdp_md *ctx) {

while (head != NULL) {

sanitize(head);

head = head->next;

}

return bpf_redirect(...);

}

Memory safety using sandboxing
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int prog(struct xdp_md *ctx) {

while (head != NULL) {

sanitize(head);

head = head->next;

}

return bpf_redirect(...);

}

Memory safety using sandboxing
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Extension cancellations

● Safely terminate an extension at a given point in bounded time
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Safe termination using extension cancellations

● Find non-terminating loops
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● Instrument loop back-edges
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Safe termination using extension cancellations

● Find non-terminating loops
● Instrument loop back-edges
● Terminate and release kernel resources on a stall
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while (head != NULL) {

head = head->next;

}



Safe termination using extension cancellations
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   

   sanitize(head);

   head = head->next;

   

}

bpf_sk_release(sk);

return bpf_redirect(...);

}
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void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   

   sanitize(head);

   head = head->next;

   *terminate;    

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Safe termination using extension cancellations
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Safe termination using extension cancellations
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   Object Table

   sanitize(head);

   head = head->next;

   *terminate;    P1

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

sk bpf_sk_release
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Recovery of the kernel
void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {  

   sanitize(head);

   head = head->next;

   *terminate;    

}

bpf_sk_release(sk);

return bpf_redirect(...);

}
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void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   

   sanitize(head);

   head = head->next;

   *(NULL);    Reset to NULL

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel
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void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   

   sanitize(head);

   head = head->next;

   *(NULL);    Page fault!

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel
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void prog(struct xdp_md *ctx) {

sk = bpf_sk_lookup(...);  

while (head != NULL) {   Object Table

   sanitize(head);

   head = head->next;

   *(NULL);    P1

}

bpf_sk_release(sk);

return bpf_redirect(...);

}

Recovery of the kernel

sk bpf_sk_release
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Evaluation
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● Can KFlex improve end-to-end performance for applications?

● Can KFlex enable flexibility with low overhead?



Memcached in XDP
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Memcached in XDP
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Memcached in XDP
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Memcached in XDP
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3x
Allows both SETS/GETS

No memory waste

Low overhead

KFlex enables significant throughput improvements

Allows both SETS/GETS

No memory waste

Low overhead
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Data Structures
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7% throughput overhead

30% latency overhead

Offload arbitrary data structures
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Implement infeasible functionality at low overhead



More results in the paper!
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Impact of co-designing runtime mechanisms with 
verification

Throughput + latency numbers for Redis

Latency numbers for Memcached



KFlex: fast, flexible, and practical kernel extensions

● Separate kernel safety into two sub-properties
○ Use distinct, bespoke mechanisms to enforce each sub-property
○ Co-design runtime mechanisms with verification to reduce overhead
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KFlex: fast, flexible, and practical kernel extensions

● Separate kernel safety into two sub-properties
○ Use distinct, bespoke mechanisms to enforce each sub-property
○ Co-design runtime mechanisms with verification to reduce overhead

● Integrated into the upstream Linux kernel
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Project website


