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Kernel extensions are critical

Mechanism to safely modify the kernel at runtime

Used for observability, security, networking

Emerging use cases: Application offloads, CPU scheduling
eBPF is 1% of all CPU cycles globally on Meta'’s fleet
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Ideal extensibility goals

Safety: Cannot crash or stall the kernel
Flexibility: Allow diverse behavior in extension code
Performance: Low overhead on execution

Practicality: Language-independence
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Ideal extensibility goals

| Safety: Cannot crash or stall the kernel

Safety is fundamental for kernel extensions
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Problem Statement

Kernel extensibility today is either flexible or performant — not both
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KFlex: fast, flexible, and practical extension framework

A
O KFlex

Flexib?lity

o

>

Performance

Upstreamed into the Linux kernel mainline
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Example use case: Memcached offload
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Lack of flexibility with eBPF
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e Data structures cannot be shared

o Wasted memory
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Lack of flexibility with eBPF
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e No user-defined data structures NIC
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Current extensibility approach to safety hurts flexibility




eBPF overview: linked list iteration

struct list head *head; <

int prog(struct xdp md *ctx) {
while (head != NULL) {

head = head->next;

}

return bpf redirect(...);

Linked list head
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Linked list head

Linked list iteration
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eBPF overview

0 Write extension code

SEC(“xdp”)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

}
return XDP_PASS;
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eBPF overview

0 Write extension code
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eBPF overview

— 0 Write extension code
SEC(“xdp”

int prog(struct xdp_md *ctx) {
while (head != NULL) {
L]
head = headnexts Kernel interface
}
[ J

Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

1 9 . . 6 . - No arbitrary or out of
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eBPF overview

0 Write extension code
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eBPF: issues with current design

int prog(struct xdp md *ctx) {

lwhile (head != NULL) { |

head = head->next;

}

return bpf redirect(...);

Verifier

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses
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eBPF: issues with current design

int prog(struct xdp md *ctx) { Verifier

while (head != NULL) { Kernel interface

- Kernel helper calls,
kernel objects

head = head->next;

} Termination

. - Do not hang the kernel
return bpf redirect(...);

Memory safety

} - No arbitrary or out of
bounds accesses
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eBPF: safety of kernel interfaces

int prog(struct xdp md *ctx) {
while (head != NULL) {

head = head->next;

}

return bpf redirect(...);

Verifier

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses
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Problem statement

Kernel extensibility is either flexible, or performant — not both
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KFlex

O > KFlex
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An extension framework for
arbitrary code extensibility
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Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Kernel interface compliance

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses
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Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Kernel interface compliance

Flexibility is w.r.t extension memory & time

Extension correctness

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses
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KFlex: use dedicated mechanisms

e Kernel interface compliance: Narrow, well-defined

Static verification
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e Extension correctness: Diverse and arbitrary behavior
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KFlex: use dedicated mechanisms

e Kernel interface compliance: Narrow, well-defined

Static verification

e Extension correctness: Diverse and arbitrary behavior

Runtime checks

Eliminate runtime overhead with co-design of runtime
checks and verification
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KFlex overview
0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

} *----5

return XDP_PASS; I

Compilation Verification Accept
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KFlex overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {

head = head->next;

} o +----- _|
} + | Q Reject and notify user
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Compllatlon Verlﬁcatlon lT Accept

Instrumgntatlon
Engine
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KFlex overview
0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {

head = head->next;
} == - -
return XDP_PASS; I
¥
* : G Reject and notify user
L T R L e RLRCAURLE r ...............................
:eBPF |

T
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Extension correctness with runtime checks

e Memory safety for extension-owned data

e Safe termination to ensure forward progress
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Memory safety using sandboxing

Dedicated region for extension-owned
memory

. . . Heap region
e All extension data lives in heap

e Pages can be allocated and =
deallocated on demand \ /
Guard pages

e Surrounded by guard pages that
trap out-of-bounds accesses



Memory safety using sandboxing

int prog(struct xdp md *ctx) {

. Heap region
while (head != NULL) {

head = head->next;

} \ May be out of bounds

return bpf redirect(...);



Memory safety using sandboxing

int prog(struct xdp md *ctx) {

while (head != NULL) { Heap region

sanitize(head); |

head = head->next; \ .
Instrumentation
} Engine

return bpf_redirect(...);




Memory safety using sandboxing

int prog(struct xdp md *ctx) {

while (head != NULL) { ... Heip, region
| ..

sanitize(head); |

head = head->next; <@—

} — Within bounds!

return bpf_redirect(...);



Extension cancellations

e Safely terminate an extension at a given point in bounded time

44



Safe termination using extension cancellations

e Find non-terminating loops

while (head != NULL) {:

head = head->next;
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Safe termination using extension cancellations

e Find non-terminating loops
e Instrument loop back-edges

while (head != NULL) {:

head = head->next;

head != NULL?

Yes Back-edge

N / ¥

head = head->next End
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Safe termination using extension cancellations

e Find non-terminating loops
e Instrument loop back-edges
e Terminate and release kernel resources on a stall

while (head != NULL) {:

head != NULL?

head = head->next; : >
} Yes Back-edge No
S : : " / v
- | head = head->next End




Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {

sanitize(head);

head = head->next;

}
bpf sk release(sk);

return bpf redirect(...);
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Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf_sk_lookup(...);‘
while (head != NULL) {

sanitize(head);
head = head->next;

*terminate; @ InstrEnmgei:’éatlon

}
bpf_sk_release(sk);‘

return bpf redirect(...);



Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*terminate; | <

}
bpf sk release(sk);

return bpf redirect(...);

P1

/

Object Table

sk | bpf sk release
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Recovery of the kernel

void prog(struct xdp md *ctx) {

sk = bpf sk _lookup(...);

while (head != NULL) {
sanitize(head);
head = head->next;
*terminate;

}

bpf_sk_release(sk);

return bpf redirect(...);



Recovery of the kernel

void prog(struct xdp md *ctx)
sk = bpf_sk_lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*(NULL) ; | <@

}
bpf sk _release(sk);

return bpf redirect(...);

{

Reset to NULL KFlex
Runtime
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Recovery of the kernel

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);
head = head->next;

*(NULL); ‘ < Page fault!

}
bpf sk release(sk);

return bpf redirect(...);
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Recovery of the kernel

void prog(struct xdp md *ctx)
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*(NULL); | <@

4
}

bpf sk release(sk);

return bpf redirect(...);

{

o

Obiject Table

sk | bpf sk release
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Evaluation

e Can KFlex improve end-to-end performance for applications?

e Can KFlex enable flexibility with low overhead?
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Memcached in XDP

Throughput (Ops/sec)

2,000K

1,500K

1,000K

500K

OK

90/10

® Memcached

50/50

GETS/SETS Ratio
BMC = KFlex

10/90

56



Memcached in XDP

2 000K
3
& 1500K
(7]
o
®)
= 1.000K
-}
o
o
= 500K
o
e
= 0K

90/10 50/50

GETS/SETS Ratio
® Memcached = BMC = KFlex

10/90

57



Memcached in XDP

Throughput (Ops/sec)
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GETS/SETS Ratio
® Memcached = BMC = KFlex

Allows both SETS/GETS

No memory waste

Low overhead

58



Memcached in XDP

2,000K

Allows both SETS/GETS

1,500K

1,000K /-
500K | No memory waste

Throughput (Ops/sec)

OK

90/10 50/50

Low overhead

GETS/SETS Ratio
® Memcached = BMC = KFlex

KFlex enables significant throughput improvements




Throughput (Mops/s)
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Data Structures

Hashmap

Update Lookup Delete

Skip list
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Offload arbitrary data structures

7% throughput overhead

30% latency overhead
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Data Structures

Hashmap

Offload arbitrary data structures

7% throughput overhead

Update Lookup Delete

Skip list

30% latency overhead

Throughput (Mops/s)

Implement infeasible functionality at low overhead
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More results in the paper!

Latency numbers for Memcached

Throughput + latency numbers for Redis

Impact of co-designing runtime mechanisms with
verification
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KFlex: fast, flexible, and practical kernel extensions

e Separate kernel safety into two sub-properties
o Use distinct, bespoke mechanisms to enforce each sub-property
o Co-design runtime mechanisms with verification to reduce overhead
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KFlex: fast, flexible, and practical kernel extensions

e Separate kernel safety into two sub-properties
o Use distinct, bespoke mechanisms to enforce each sub-property
o Co-design runtime mechanisms with verification to reduce overhead

e Integrated into the upstream Linux kernel
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© > Project website
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