Fast, Flexible, and Practical
Kernel Extensions

Kumar Kartikeya Dwivedi, Rishabh lyer, Sanidhya Kashyap

=P-L

Kernel extensions are critical

e Mechanism to safely modify the kernel at runtime

Kernel extensions are critical

e Mechanism to safely modify the kernel at runtime

cilium

L eBPF

Kernel extensions are critical

e Mechanism to safely modify the kernel at runtime
e Used for observability, security, networking

cilium

L eBPF

Kernel extensions are critical

e Mechanism to safely modify the kernel at runtime
e Used for observability, security, networking
e Emerging use cases: Application offloads, CPU scheduling

aeBPF Ratran 8§88 cilium

Kernel extensions are critical

Mechanism to safely modify the kernel at runtime

Used for observability, security, networking

Emerging use cases: Application offloads, CPU scheduling
eBPF is 1% of all CPU cycles globally on Meta'’s fleet

ﬁe,BPF Hatran g8 cilium

Ideal extensibility goals

Safety: Cannot crash or stall the kernel
Flexibility: Allow diverse behavior in extension code
Performance: Low overhead on execution

Practicality: Language-independence

Ideal extensibility goals

Safety: Cannot crash or stall the kernel

Ideal extensibility goals

| Safety: Cannot crash or stall the kernel

Safety is fundamental for kernel extensions

9

Problem Statement

Kernel extensibility today is either flexible or performant — not both

N
&

Flexibility

o

>
Performance

10

KFlex: fast, flexible, and practical extension framework

A
O KFlex

Flexib?lity

o

>

Performance

Upstreamed into the Linux kernel mainline

11

Example use case: Memcached offload

Vs

J

Memcached

Network stack

Driver

NIC

- = = =
Al wlhswill/

Req Rsp

Traditional model

Example use case: Memcached offload

In-kernel lookaside cache1

Vs

Memcached

J

Network stack

Driver

NIC

S

- e = =

Req

Al wlhswill/

Rsp

Traditional model

1

> Cache

}(

()

Memcached

-

Network stack

N
NeBPF .
Driver

NIC

-

Get Set
req/rsp

Extended model

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI'21

req/rsp

13

Lack of flexibility with eBPF

1

e Data structures cannot be shared

o Wasted memory

S

Cache

~
J

Memcached

-

Network stack

N
N eBPF

Driver

NIC

-

Get Set
req/rsp req/rsp

Extended model

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI'21

14

Lack of flexibility with eBPF

1

Vs

J

e Data structures cannot be shared
Memcached
o Wasted memory ff =
. Network stack
e No memory allocation
Cach ¢BPF . I_l<
o Only handle GETs ache Driver I—k
NIC
Get Set
req/rsp req/rsp

Extended model

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI'21

15

Lack of flexibility with eBPF

1

Vs

J

e Data structures cannot be shared
Memcached
o Wasted memory ff =
. Network stack
e No memory allocation v
Cach HeBPF _ . H
o Only handle GETs ache Driver I—l<
e No user-defined data structures NIC
Get Set
req/rsp req/rsp

Extended model

BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing, NSDI'21

16

Lack of flexibility with eBPF

Vs

J

e Data structures cannot be shared

Memcached
o Wasted memory ff =
. Network stack
e No memory allocation v

C WeBPF _ . H
o Only handle GETs ache Driver ' l

e No user-defined data structures NIC
Get Set

req/rsp req/rsp

Current extensibility approach to safety hurts flexibility

eBPF overview: linked list iteration

struct list head *head; <

int prog(struct xdp md *ctx) {
while (head != NULL) {

head = head->next;

}

return bpf redirect(...);

Linked list head

18

eBPF overview: linked list iteration

struct list head *head; <

int prog(struct xdp_md *ctx) {
while (head != NULL) {

head = head->next; =

}

return bpf redirect(...);

Linked list head

Linked list iteration

19

eBPF overview

0 Write extension code

SEC(“xdp”)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

}
return XDP_PASS;

20

eBPF overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

}
return XDP_PASS;

21

eBPF overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

}
return XDP_PASS;

- Compilation Verification

22

eBPF overview

— 0 Write extension code
SEC(“xdp”

int prog(struct xdp_md *ctx) {
while (head != NULL) {
L]
head = headnexts Kernel interface
}
[J

Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

1 9 . . 6 . - No arbitrary or out of

23

eBPF overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

} *----5

return XDP_PASS; I

- Compilation Verification Accept

24

eBPF overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

}
return XDP_PASS;

- Compilation Verification Accept

25

eBPF: issues with current design

int prog(struct xdp md *ctx) {

lwhile (head != NULL) { |

head = head->next;

}

return bpf redirect(...);

Verifier

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses

26

eBPF: issues with current design

int prog(struct xdp md *ctx) { Verifier

while (head != NULL) { Kernel interface

- Kernel helper calls,
kernel objects

head = head->next;

} Termination

. - Do not hang the kernel
return bpf redirect(...);

Memory safety

} - No arbitrary or out of
bounds accesses

27

eBPF: safety of kernel interfaces

int prog(struct xdp md *ctx) {
while (head != NULL) {

head = head->next;

}

return bpf redirect(...);

Verifier

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses

28

Problem statement

Kernel extensibility is either flexible, or performant — not both
\

&

Runtime
Checks

Flexibility | (vznvo) (eBPF)

Static
Verification

<&

—
—

Performance

KFlex

O > KFlex

Runtime

Checks

F:le_xibility
Static
Verification

O i
Performance -

An extension framework for
arbitrary code extensibility

30

Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Kernel interface compliance

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses

31

Insight: separate safety properties

Kernel helper calls, kernel-owned memory

Kernel interface compliance

Flexibility is w.r.t extension memory & time

Extension correctness

Kernel interface

- Kernel helper calls,
kernel objects

Termination
- Do not hang the kernel

Memory safety

- No arbitrary or out of
bounds accesses

32

KFlex: use dedicated mechanisms

e Kernel interface compliance: Narrow, well-defined

Static verification

33

KFlex: use dedicated mechanisms

e Kernel interface compliance: Narrow, well-defined

Static verification

e Extension correctness: Diverse and arbitrary behavior

Runtime checks

34

KFlex: use dedicated mechanisms

e Kernel interface compliance: Narrow, well-defined

Static verification

e Extension correctness: Diverse and arbitrary behavior

Runtime checks

Eliminate runtime overhead with co-design of runtime
checks and verification

35

KFlex overview
0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {
head = head->next;

} *----5

return XDP_PASS; I

Compilation Verification Accept

36

KFlex overview

0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {

head = head->next;

} o +----- _|
} + | Q Reject and notify user
eB |.:>.|: :r
> P
Compllatlon Verlﬁcatlon lT Accept

Instrumgntatlon
Engine

37

KFlex overview
0 Write extension code

SEC(“xdp™)
int prog(struct xdp_md *ctx) {
while (head != NULL) {

head = head->next;
} == - -
return XDP_PASS; I
¥
* : G Reject and notify user
L T R L e RLRCAURLE r
:eBPF |

T
Compllatlon Verlﬁcatlon Accept KFlex

] Instrumentatlon Runtime
; Engine

Extension correctness with runtime checks

e Memory safety for extension-owned data

e Safe termination to ensure forward progress

39

Memory safety using sandboxing

Dedicated region for extension-owned
memory

. . . Heap region
e All extension data lives in heap

e Pages can be allocated and =
deallocated on demand \ /
Guard pages

e Surrounded by guard pages that
trap out-of-bounds accesses

Memory safety using sandboxing

int prog(struct xdp md *ctx) {

. Heap region
while (head != NULL) {

head = head->next;

} \ May be out of bounds

return bpf redirect(...);

Memory safety using sandboxing

int prog(struct xdp md *ctx) {

while (head != NULL) { Heap region

sanitize(head); |

head = head->next; \ .
Instrumentation
} Engine

return bpf_redirect(...);

Memory safety using sandboxing

int prog(struct xdp md *ctx) {

while (head != NULL) { ... Heip, region
| ..

sanitize(head); |

head = head->next; <@—

} — Within bounds!

return bpf_redirect(...);

Extension cancellations

e Safely terminate an extension at a given point in bounded time

44

Safe termination using extension cancellations

e Find non-terminating loops

while (head != NULL) {:

head = head->next;

45

Safe termination using extension cancellations

e Find non-terminating loops
e Instrument loop back-edges

while (head != NULL) {:

head = head->next;

head != NULL?

Yes Back-edge

N / ¥

head = head->next End

46

Safe termination using extension cancellations

e Find non-terminating loops
e Instrument loop back-edges
e Terminate and release kernel resources on a stall

while (head != NULL) {:

head != NULL?

head = head->next; : >
} Yes Back-edge No
S : : " / v
- | head = head->next End

Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {

sanitize(head);

head = head->next;

}
bpf sk release(sk);

return bpf redirect(...);

48

Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf_sk_lookup(...);‘
while (head != NULL) {

sanitize(head);
head = head->next;

*terminate; @ InstrEnmgei:’éatlon

}
bpf_sk_release(sk);‘

return bpf redirect(...);

Safe termination using extension cancellations

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*terminate; | <

}
bpf sk release(sk);

return bpf redirect(...);

P1

/

Object Table

sk | bpf sk release

50

Recovery of the kernel

void prog(struct xdp md *ctx) {

sk = bpf sk _lookup(...);

while (head != NULL) {
sanitize(head);
head = head->next;
*terminate;

}

bpf_sk_release(sk);

return bpf redirect(...);

Recovery of the kernel

void prog(struct xdp md *ctx)
sk = bpf_sk_lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*(NULL) ; | <@

}
bpf sk _release(sk);

return bpf redirect(...);

{

Reset to NULL KFlex
Runtime

52

Recovery of the kernel

void prog(struct xdp md *ctx) {
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);
head = head->next;

*(NULL); ‘ < Page fault!

}
bpf sk release(sk);

return bpf redirect(...);

53

Recovery of the kernel

void prog(struct xdp md *ctx)
sk = bpf sk _lookup(...);
while (head != NULL) {
sanitize(head);

head = head->next;

*(NULL); | <@

4
}

bpf sk release(sk);

return bpf redirect(...);

{

o

Obiject Table

sk | bpf sk release

54

Evaluation

e Can KFlex improve end-to-end performance for applications?

e Can KFlex enable flexibility with low overhead?

55

Memcached in XDP

Throughput (Ops/sec)

2,000K

1,500K

1,000K

500K

OK

90/10

® Memcached

50/50

GETS/SETS Ratio
BMC = KFlex

10/90

56

Memcached in XDP

2 000K
3
& 1500K
(7]
o
®)
= 1.000K
-}
o
o
= 500K
o
e
= 0K

90/10 50/50

GETS/SETS Ratio
® Memcached = BMC = KFlex

10/90

57

Memcached in XDP

Throughput (Ops/sec)

2,000K
1,500K
1,000K

500K

OK

90/10 50/50 10/90

GETS/SETS Ratio
® Memcached = BMC = KFlex

Allows both SETS/GETS

No memory waste

Low overhead

58

Memcached in XDP

2,000K

Allows both SETS/GETS

1,500K

1,000K /-
500K | No memory waste

Throughput (Ops/sec)

OK

90/10 50/50

Low overhead

GETS/SETS Ratio
® Memcached = BMC = KFlex

KFlex enables significant throughput improvements

Throughput (Mops/s)

Data Structures

" Hashmap
10
8
6
4
2
0
Update Lookup Delete
020 Skip list
0.15
0.10
0.05
0.00 -
Update Lookup Delete

m Kernel Module = KFlex

60

Data Structures

Hashmap

Update Lookup Delete

Skip list

0.20

0.15

Throughput (Mops/s)

0.10

0.05

0.00
Update Lookup Delete

m Kernel Module = KFlex

Offload arbitrary data structures

7% throughput overhead

30% latency overhead

61

Data Structures

Hashmap

Offload arbitrary data structures

7% throughput overhead

Update Lookup Delete

Skip list

30% latency overhead

Throughput (Mops/s)

Implement infeasible functionality at low overhead

62

More results in the paper!

Latency numbers for Memcached

Throughput + latency numbers for Redis

Impact of co-designing runtime mechanisms with
verification

63

KFlex: fast, flexible, and practical kernel extensions

e Separate kernel safety into two sub-properties
o Use distinct, bespoke mechanisms to enforce each sub-property
o Co-design runtime mechanisms with verification to reduce overhead

64

KFlex: fast, flexible, and practical kernel extensions

e Separate kernel safety into two sub-properties
o Use distinct, bespoke mechanisms to enforce each sub-property
o Co-design runtime mechanisms with verification to reduce overhead

e Integrated into the upstream Linux kernel

Flex?hihty

O > KFlex
Runtime
Checks
Static
Verification
© > Project website

Performance 65

