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Abstract
Caching is widely used in industry to improve application
performance by reducing data-access latency and taking the
load off the backend infrastructure. TTLs have become the
de-facto mechanism used to keep cached data reasonably
fresh (i.e., not too out of date with the backend). However,
the emergence of real-time applications requires tighter data
freshness, which is impractical to achieve with TTLs. We
discuss why this is the case, and propose a simple yet effective
adaptive policy to achieve the desired freshness.
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1 Introduction
In-memory caching is widely used to improve application
performance by reducing data-access latency and the load on
the backend data store. The vast majority of these caches are
deployed as lazy or cache-aside caches [4, 25, 26, 28] (shown
in Figure 1). In such caches, reads are served from caches,
writes are issued directly to the backend data store, and the
caches are populated when read misses in the cache.
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A key aspect of caching is data freshness. Data is fresh
within a staleness bound 𝑇 if a cached object reflects the state
of the backend data store (the ground truth) at some point in
the last 𝑇 seconds [27].

The primary technique used to ensure data freshness in
caches today is Time-To-Live (TTL) [5, 7, 8, 10, 11, 19–
21, 26, 28, 29]. TTLs are typically on the order of minutes to
hours [28], and work as follows: whenever a data object is
brought into the cache from the data store, a timer of duration
𝑇 is set. When the timer expires, the object is either (1) re-
fetched from the data store or (2) expired and removed from
the cache; both of these actions ensure that future reads see a
fresh copy from the data store. The main advantage of TTLs
is that they are easy to deploy because they need little coor-
dination between the cache and the data store; all freshness
decisions can be made using a simple timer local to the cache.
This is a primary reason behind the popularity of TTL-based
techniques to bound staleness for over two decades [14, 23].

However, the emergence of real-time applications with
tighter freshness requirements demands new solutions for
cache freshness [3]. For example, Databricks’ Unity Cata-
log [16] stores metadata information that requires high data
freshness, on the order of seconds. Other examples include
serving dynamic web content [2], financial applications (e.g.,
viewing stock prices) [9, 13], ad bidding [31], and emergency
response [9]. These applications have stringent freshness
requirements since they typically entail real-time decision-
making. For example, a service that provides stock infor-
mation to analysts requires data to be as fresh as possible
to enable real-time financial decisions. A service managing
Access Control List (ACL) needs to be fresh to ensure that
permissions can be added or revoked immediately.

TTLs introduce prohibitive overhead when applications
require data freshness at real-time timescales. This is because,
with TTLs, the rate at which additional read requests are
made to the backend—either to re-fetch data or due to cache
misses that occur when data is expired—is inversely propor-
tional to 𝑇 since these requests are made each time the timer
with duration 𝑇 expires. This leads to prohibitively high over-
heads when 𝑇 is small. This overhead is so large that when
designing systems for real-time applications, practitioners are
forced to sacrifice caching (and its benefits) for data freshness,
preferring to issue reads directly to the database instead.
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Figure 1: Lazy or cache-aside caches; the predominant way in
which in-memory caches are deployed today. In such caches,
data freshness is not guaranteed since writes bypass the cache.
Servicing a miss can either be initiated by the cache or by the
application.

So, we ask the question: Is it feasible to efficiently provide
cache freshness for real-time applications?

To answer this question, we first develop a simple mathe-
matical model that enables us to better understand the trade-
offs presented by different techniques for ensuring cache
freshness. We then use this model to show that, at real-time
timescales, making freshness decisions in response to incom-
ing writes is more efficient than TTL-based policies. Based on
this observation, we develop a simple algorithm that adapts to
the read-write characteristics of the incoming workload, and
show, using simulations, that it has the potential to answer
the above question in the affirmative. A salient benefit of our
algorithm is that it makes freshness decisions on a per-object
basis; this ensures that it can be implemented efficiently since
it does not require coordinating states across objects.

While providing a theoretical model to reason about cache
freshness, our work leaves several system-design questions
unanswered. In particular, reacting to writes mandates active
coordination between the backend and the cache, a topic that
has received little attention due to the near-ubiquitous use
of TTLs thus far. We conclude this paper with a set of open
research questions that must be answered before real-time
freshness can be realized in a practical system.

2 Reasoning About Freshness Quantitatively
We now introduce a simple mathematical model that enables
us to quantitatively reason about the trade-offs presented by
different techniques for ensuring cache freshness (§2.1). We
then validate our model by showing how it can model the
overheads of TTL-based policies at various timescales (§2.2).

2.1 The cost of serving fresh data
Since writes bypass caches, cached data is not guaranteed to
be fresh. Thus, serving fresh data from the cache incurs cost
(in terms of overhead on the infrastructure). We model this
cost using two metrics: the freshness cost (𝐶𝐹 ), and the stale-
ness cost (𝐶𝑆 ). 𝐶𝐹 refers to the throughput overhead incurred
to keep data fresh in the cache.𝐶𝐹 captures the overhead (e.g.,
compute and network) of sending and receiving messages
between the cache and the data store to keep data in the cache

fresh: including backend invalidating or updating data in the
cache upon write, or the cache fetching fresh data from the
backend when a miss occurs due to stale data. 𝐶𝐹 aggregates
the overhead across different parts of the system into a single
metric1.

The staleness cost (𝐶𝑆 ) refers to the latency overhead in-
curred when reading data in the cache that is not fresh (i.e.,
stale). This overhead manifests as increased end-to-end la-
tency for clients since stale data causes a request to miss in
the cache. As the precise latency is a function of the system
implementation, we quantify 𝐶𝑆 in terms of the number of
cache misses that occur when the requested object was present
in the cache, but could not be returned since it was stale. 𝐶𝑆

is different from miss ratio, which additionally considers the
misses as a result of reading un-cached data (data that was
evicted or never brought into the cache).

We use 𝐶𝐹 and 𝐶𝑆 to compare the throughput and latency
overheads of different mechanisms to ensure freshness. To
calculate 𝐶𝐹 and 𝐶𝑆 for entire workloads, we make a simpli-
fying assumption that 𝐶𝑆 and 𝐶𝐹 for different data objects are
independent, and so 𝐶𝑆 and 𝐶𝐹 for the entire workload is the
sum of 𝐶𝑆 and 𝐶𝐹 for each object accessed in the workload.
This assumption does not strictly hold; for instance, 𝐶𝑆 is af-
fected by whether the object is evicted from the cache (which
is a function over all objects). However, we find that it allows
for a simple formulation of𝐶𝑆 and𝐶𝐹 while providing results
that closely match the simulations.

2.2 Why TTLs are no longer sufficient
TTLs are deployed in two forms: TTL-expiry and TTL-polling.
In the former, when the TTL expires, the object is invalidated
in the cache with the next read incurring a miss. In the latter,
when the TTL expires, the object is re-fetched from the data
store, to ensure that subsequent reads see fresh data.

We now evaluate 𝐶𝑆 and 𝐶𝐹 for the above TTL-based poli-
cies. We use the “bounded staleness” definition of freshness
introduced in §1: cached data is considered fresh if it reflects
all writes made ≥ 𝑇 time ago to the backend data store. Since
we assume that 𝐶𝑆 and 𝐶𝐹 for different objects are indepen-
dent and additive, we consider each object independently.
Let 𝑃𝑅 (𝑇 ), 𝑃𝑊 (𝑇 ) be the probability that there exists at least
one read, or one write over an interval 𝑇 to that object. To
calculate 𝑃𝑅 (𝑇 ) and 𝑃𝑊 (𝑇 ), one way is to model the request
arrival as a Poisson process with an average rate 𝜆. Like most
prior work [2, 22, 30], we assume that individual requests
to the object are independent and are reads with a probabil-
ity of 𝑟 and writes with a probability of 1 − 𝑟 . In this case,
𝑃𝑅 (𝑇 ) = 1 − 𝑒−𝜆𝑟𝑇 and 𝑃𝑊 (𝑇 ) = 1 − 𝑒−𝜆 (1−𝑟 )𝑇 .

1Since the policy can be implemented differently and across various parts
of the system (e.g., the cache, the backend, the load balancer, etc), we chose
to aggregate them into a single metric for simplicity. We elaborate on this
choice in §3.3.
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Figure 2: Effect of decreasing staleness bound on normalized staleness cost (𝐶′

𝑆
, §2). The x-axis is in log scale.
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Figure 3: Effect of decreasing staleness bound on normalized freshness cost (𝐶′

𝐹
, §2). Both the x and the y axis are in log scale.

TTL-expiry: To calculate𝐶𝑆 , we consider a time period of𝑇 ′.
Since data is expired every 𝑇 , the number of misses incurred
is 1 per interval 𝑇 , if there was at least one read request
during that interval. Therefore, 𝐶𝑆 over a time interval 𝑇 ′

is: 𝐶𝑆 = 𝑇 ′

𝑇
𝑃𝑅 (𝑇 ). The miss ratio due to reading cached but

stale data is the staleness cost divided by the total number of
reads over 𝑇 ′ (𝑁𝑅 , 𝑁𝑅 = 𝜆𝑟𝑇 ′ under Poisson): 𝐶𝑆

𝑁𝑅
. As 𝑇 → 0,

the miss ratio approaches 1. Since TTL-expiry does not need
coordination with the backend to keep data in the cache fresh,
the only overhead incurred as part of 𝐶𝐹 is those to service
misses due to stale data. So, 𝐶𝐹 = 𝐶𝑆 × 𝑐𝑚 , where 𝑐𝑚 is the
overhead incurred upon a miss.

TTL-polling: For this policy, the staleness cost (𝐶𝑆 ) is zero.
This is because TTL-polling proactively fetches data from
the backend when the TTL expires, ensuring that any data
present in the cache is never stale. However, this leads to a
large𝐶𝐹 . Specifically,𝐶𝐹 over a time𝑇 ′ is𝐶𝐹 = 𝑐𝑚 × 𝑇 ′

𝑇
. This

is because, at the end of each 𝑇 , the cache must read the fresh
value from the backend data store, just as it would during a
miss. Once again, as 𝑇 → 0, 𝐶𝐹 increases significantly.

To demonstrate how large these overheads can get in prac-
tice, and also as a sanity check for our simple model, we
perform simulations that measure the freshness and staleness
costs. We simulate three workloads; all of which consist of
multiple keys with limited cache capacity; to evaluate our
assumption about 𝐶𝑆 and 𝐶𝐹 being additive. The three work-
loads are a synthetic Poisson workload with 𝜆 = 10 and
Zipfian distribution (𝑠 = 1.3) across keys, and two production
workloads from Meta [1, 7] and Twitter [28], respectively.

To give a better idea of how much these overheads matter,
we normalize both 𝐶𝐹 and 𝐶𝑆 . 𝐶𝐹 is normalized (𝐶′

𝐹
) by the

overhead incurred to serve all read requests in the system.
Thus𝐶′

𝐹
represents the ratio of the wasted cycles to the useful

cycles spent serving data in the system. We normalize𝐶𝑆 (𝐶′
𝑆
)

by the number of reads for which the object requested was
present in the cache. Thus𝐶′

𝑆
represents the miss ratio caused

solely due to reading stale data.
Figure 2 and Figure 3 illustrate the results for TTL-expiry

and TTL-polling respectively2, compared against our theoret-
ical model. We see two clear takeaways: (1) for both policies,
our model predicts the overhead with reasonable accuracy,
despite our assumption of 𝐶𝐹 and 𝐶𝑆 being additive and inde-
pendent (2) the overhead increases to prohibitive amounts as
𝑇 shrink close to 0. Practitioners today are aware of the latter,
and as a result, sacrifice caching (and its benefits) when build-
ing systems for applications that require real-time freshness.

3 Design
Our proposed approach is based on the observation that fresh-
ness decisions (e.g., whether to expire or re-fetch cached data)
are only necessary when the system receives write requests.
Specifically, to ensure bounded staleness of 𝑇 for a particular
object, the data store and the cache only need to coordinate
once per 𝑇 if one or more write requests to that object were
received during the past𝑇 , and need not coordinate otherwise.

Based on this observation, we propose an approach that
reacts to writes with either updates or invalidates. An update

2We show only𝐶′
𝑆

for expiry since𝐶′
𝐹

is a simple multiple with 𝑐𝑚 . We plot
only 𝐶′

𝐹
for polling since 𝐶′

𝑆
for polling is zero
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Figure 4: System Overview. Depending on the workload pattern,
the policy dynamically decides between invalidation and updates.
Invalidates or updates are buffered at the data store and batched
over 𝑇 .

is a message from the backend to the cache that modifies an
object in the cache to reflect its latest state, and importantly
does nothing if the object is not in the cache. An invalidate is
a message from the backend to the cache that marks a cached
object as stale or invalid, causing the following read to be
treated as a miss. Updates and invalidates are counterparts to
TTL-polling and TTL-expiry; both updates and TTL-polling
refresh cached objects, while invalidates and TTL-expiry ex-
pire cached objects. The only difference is that updates and
invalidates are performed when a write occurs, while the two
TTL-based policies are used when the TTL expires.

Figure 4 shows our proposed system architecture. New in-
validates or updates over 𝑇 are buffered and batched at the
data store. Depending on the policy (which we will discuss
in the rest of the section), the backend either sends out in-
validates or updates for the buffered keys every interval of 𝑇 .
Note, that this buffering of writes and sending of updates and
invalidates can also be implemented at proxies, not just at the
data store.

In the rest of the section, we first use our model to show that
updates and invalidates typically lead to lower overheads than
TTL-polling and TTL-expiry, respectively to make the case
for reacting to writes and not TTLs (§3.1). We then explore
the question of how to choose between sending an update or
an invalidate upon receiving a write and show that different
keys benefit from different decisions (§3.2).

3.1 Reacting to writes versus TTLs
We now calculate the freshness cost 𝐶𝐹 and staleness cost 𝐶𝑆

for updates and invalidates, and show that they are typically
lower than the overheads for TTL-based policies at real-time
timescales. To do so, we introduce two additional parameters
in our model 𝑐𝑢 and 𝑐𝑖 , which refer to the overhead of updates
and invalidates, respectively. We assume 𝑐𝑢 < 𝑐𝑚 (i.e., it is
cheaper to update than to incur a miss).

Updates are more efficient than TTL-polling. Consider
a period 𝑇 ′. Our solution only requires sending one update
every 𝑇 in case of one or more writes during that duration.
Hence, since the probability of at least one write over 𝑇 is

𝑃𝑊 (𝑇 ), the freshness cost of refreshing a single key over𝑇 ′ is
𝐶𝐹 = 𝑇 ′

𝑇
𝑃𝑊 (𝑇 ) × 𝑐𝑢 . In comparison, 𝐶𝐹 for TTL-polling over

𝑇 ′ is 𝑐𝑚× 𝑇 ′

𝑇
. Since 𝑐𝑚 > 𝑐𝑢 and 𝑃𝑊 (𝑇 ) < 1, we conclude that

updates have lower throughput overhead. In terms of𝐶𝑆 , both
the above policies proactively keep data fresh, and so 𝐶𝑆 = 0,
making updates more efficient than their TTL counterparts.

Invalidation is more efficient than TTL-expiry. Consider
a time period 𝑇 ′ broken into multiple intervals of duration 𝑇 .
Consider two consecutive intervals 𝑇0 and 𝑇1 under 𝑇 ′, where
𝑇1 follows 𝑇0. Invalidates are batched and sent at the end of
𝑇0. We assume that the backend can track keys that have been
invalidated. We elaborate on this assumption in §3.3. This
means that if a key 𝑘 has been invalidated before the next
write arrives at the backend, the backend does not need to
send a second invalidate.

Let the probability that a key has been invalidated at the
end of an interval be 𝑝. Under invalidation policy, the 𝐶𝐹 is:
𝑇 ′

𝑇
((1−𝑝) ×𝑃𝑊 (𝑇 ) ×𝑐𝑖 +𝑝×𝑃𝑅 (𝑇 ) ×𝑐𝑚). The first term is the

expected overhead of an invalidate at the end of𝑇0 (probability
of the key not being invalidated multiplied by the probability
of a write multiplied by the cost of an invalidate). The second
term is the expected overhead of a miss over 𝑇1 (probability
of the key being invalidated multiplied by the probability of a
read and multiplied by the cost of a miss). To calculate 𝑝, if the
key has been invalidated in 𝑇0 and there is a read, the key will
be brought into the cache. if the key has not been invalidated
in 𝑇0 and there is no write, the key will not be invalidated
in 𝑇1. Hence: 𝑝 = 𝑝𝑃𝑅 (𝑇 ) + (1 − 𝑝) (1 − 𝑃𝑊 (𝑇 )). Solving:
𝑝 =

𝑃𝑊 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) . If we substitute 𝑝 into 𝐶𝐹 and simplify, we

get: 𝐶𝐹 = 𝑇 ′

𝑇

𝑃𝑅 (𝑇 )𝑃𝑊 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) (𝑐𝑚 + 𝑐𝑖 ). 𝐶𝑆 is 𝑇 ′

𝑇

𝑃𝑅 (𝑇 )𝑃𝑊 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) .

We now compare these costs with those for TTL-expiry
calculated in §2.2. We notice that 𝐶𝑆 for invalidates is strictly
lower than 𝐶𝑆 for TTL-expiry: 𝑇 ′

𝑇
𝑃𝑅 (𝑇 ). Additionally, we

note that for workloads that require real-time freshness, 𝐶𝐹

of invalidation is also lower than 𝐶𝐹 for TTL-expiry. For
example, assuming request arrival is Poisson with 𝜆 = 1 and
𝑟 = 0.9 and𝑇 ′ = 𝑇 ,𝐶𝐹 of invalidation is 0.00892(𝑐𝑖 + 𝑐𝑚) and
𝐶𝐹 of TTL-expiry evaluates to 0.086𝑐𝑚 , with the latter being
significantly higher. However, if workloads consist of mostly
writes and not many reads, TTL-miss might be cheaper than
invalidation; such scenarios are unlikely as caches are useful
for workloads that have reads.

In summary, reacting to writes enables real-time data fresh-
ness at lower overheads than TTL-based policies since invali-
dates and updates incur lower overheads than TTL-expiry and
TTL-polling, respectively. However, we notice that invalida-
tion is not strictly better than update or vice versa based on𝐶𝐹

and 𝐶𝑆 . This raises an interesting question: When should the
data store update and when should it invalidate? We provide
an initial answer to the question in the following sections.

4
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3.2 Picking between updates and invalidates
The key challenge in picking between updates and invalidates
is that their relative costs not only depend on the values of
the system parameters (e.g., 𝑐𝑚 vs 𝑐𝑢) but also depend on the
relative prioritization of the latency and throughput overheads
(𝐶𝑆 vs 𝐶𝐹 ). While the answer is clear in simple scenarios —
for instance, if one cares only about minimizing the latency
(no matter the throughput cost), one would always send out
updates, since they have 𝐶𝑆 = 0 — it is less clear in more
complex scenarios. We now seek to answer this question for
two such scenarios—when one seeks to maximize throughput
irrespective of latency cost, and when one seeks to maximize
throughput for a given latency cost (e.g., an SLO).

Updates vs Invalidates when optimizing throughput. We
now describe a simple formula that decides whether to send
the cache an update or invalidate upon receiving a write re-
quest to minimize the throughput overhead of freshness. We
formulate the problem of deriving this formula in the style
of classic online algorithms [18]: we denote the gap between
our online algorithm and the omniscient policy as 𝐺 . The
goal is for our policy to minimize 𝐺 . Let 𝑘 be the probability
of an update. 1 − 𝑘 is the probability of an invalidate. 𝑘 = 1
indicates that the policy decides to always update. Again let
𝑇0 and 𝑇1 be two consecutive intervals. Assume invalidates or
updates are batched and sent at the end of 𝑇0, and read and
write are independent. We have:

• Interval 𝑇1 has at least a read (probability: 𝑃𝑅 (𝑇 )).
The optimal decision is to do an update with cost 𝑐𝑢 .

• Interval𝑇1 has no read but has at least a write. (prob-
ability: (1 − 𝑃𝑅 (𝑇 ))𝑃𝑊 (𝑇 )). The optimal decision is to
do nothing with cost 0.

• If interval 𝑇1 has neither read nor write, consider
𝑇1 skipped. The intervals (say 𝑇2) following 𝑇1 will
incur the same expected gap 𝐺 , down-weighted with
probability (1 − 𝑃𝑅 (𝑇 )) (1 − 𝑃𝑊 (𝑇 )).

Each component of 𝐺 is the probability of an action (𝑘 or 1 −
𝑘), times the probability of each of the three cases, and the cost
difference to the optimal. Therefore, 𝐺 = (1 − 𝑘)𝑃𝑅 (𝑇 ) (𝑐𝑖 +
𝑐𝑚−𝑐𝑢)+𝑘 (1−𝑃𝑅 (𝑇 ))𝑃𝑊 (𝑇 )𝑐𝑢+(1−𝑘) (1−𝑃𝑅 (𝑇 ))𝑃𝑊 (𝑇 )𝑐𝑖+
(1−𝑃𝑅 (𝑇 )) (1−𝑃𝑊 (𝑇 ))𝐺 .𝐺 is minimized when the coefficient
of 𝑘 is negative: 𝑐𝑢 <

𝑃𝑅 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) (𝑐𝑚 + 𝑐𝑖 ). Intuitively, the

policy should update if the cost of an update 𝑐𝑢 is lower than
the cost of an invalidate (right-hand side). If𝑇 → 0, the above
formula reduces to 𝑐𝑢 < 𝑟 (𝑐𝑚 + 𝑐𝑖 ). This result is surprisingly
simple since it tells us that whether to update or invalidate
depends only on the read/write ratio of requests to an object. It
is independent of request rate 𝜆 and 𝑇 when 𝑇 → 0. At small
timescales (𝑇 comparable to network delay), invalidates or
updates have to be sent out immediately. Hence the decision
should be independent of the exact values of 𝑇 and 𝜆.

Maximizing throughput for a latency SLO. System de-
signers rarely optimize throughput in isolation; instead, they
typically seek to maximize throughput while meeting a la-
tency target (e.g., an SLO). To address such scenarios, we
extend the formulation we just described with an additional
constraint to respect a given latency SLO. Since latencies are
functions of implementations, we instead use 𝐶𝑆 (which rep-
resents the misses in the cache due to stale data) as a proxy for
latency. Thus, we seek to minimize the throughput overhead
(𝐶𝐹 ) while meeting an upper-bound on the miss ratio due to
staleness.

The staleness cost 𝐶𝑆 = 𝑇 ′

𝑇

𝑃𝑅 (𝑇 )𝑃𝑊 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) , the coefficient of

𝑐𝑚 in the formula for 𝐶𝐹 . The miss ratio due to reading stale
data (𝐶𝑆 divided by the total number of reads 𝑁𝑟 over 𝑇 ′, or
under Poisson, 𝜆𝑟𝑇 ′) 𝐶′

𝑆
(first introduced in §2.2) is: 𝐶′

𝑆
=

1
𝜆𝑟𝑇

𝑃𝑅 (𝑇 )𝑃𝑊 (𝑇 )
𝑃𝑅 (𝑇 )+𝑃𝑊 (𝑇 ) . If 𝑇 → 0, 𝐶′

𝑆
reduces to: 1 − 𝑟 . Staleness

cost can be applied as a constraint from the user. So, if 𝐶 is
the user-specified𝐶′

𝑆
constraint:𝐶′

𝑆
≤ 𝐶, the backend chooses

to send updates if (𝑐𝑖 +𝑐𝑚) ×𝑟 > 𝑐𝑢 or 1−𝑟 > 𝐶, and chooses
to send invalidates if otherwise. Once again surprisingly, we
see that the choice is independent of 𝜆 and 𝑇 when 𝑇 → 0.

3.3 Realizing the policy in a system
So far the discussion has been over parameters (𝑐𝑢 , 𝑐𝑖 , and
𝑐𝑚) – we next discuss preliminary ideas on how we can mea-
sure them in practice. Real workloads are often diverse and
variable [28]; invalidates or updates likely work in some sit-
uations but fall short in others. Therefore, these parameters
need to be set adaptively in response to system bottlenecks
and different overheads of invalidates and updates per key.

Estimating 𝑐𝑢 , 𝑐𝑖 , 𝑐𝑚 from systems bottlenecks.
To estimate 𝑐𝑢 , 𝑐𝑖 , 𝑐𝑚 , the policy first detects system bot-

tlenecks that may arise from various components such as
backend CPUs, caches, and network bandwidth. The policy
then decides the cost values to set given the system bottleneck.

We have developed tools to identify systems bottlenecks,
such as by measuring backend CPU utilization from /proc/-
stat, network usage from /proc/net/dev, and disk I/O
usage from /proc/diskstats. Users can also label a re-
source as the bottleneck based on offline profiling, which
is often required before deployment. The optimal strategy
depends on the nature of the bottleneck. For instance, if the
backend CPU or the network bandwidth is the bottleneck,
𝑐𝑢 , 𝑐𝑖 , and 𝑐𝑚 should be set based on either the CPU cycles
needed for serialization, or message size. 𝑐𝑢 , 𝑐𝑖 and 𝑐𝑚 should
be scaled by the sizes of the actual keys and values. Table 1
illustrates one example of setting 𝑐𝑢 , 𝑐𝑖 , and 𝑐𝑚 where either
the cache or backend CPU is the bottleneck. In scenarios
where the user prioritizes read latency over throughput or
always overprovisions, the policy can set 𝑐𝑚 = ∞ and only
send updates.
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Figure 5: Comparison to baselines. Adpt. denotes our proposed adaptive policy. Adpt. + C.S. denotes data store knowing which keys
are present in the cache (C.S.). Opt. denotes the optimal policy. The left x-axis is in the log scale. The blue bar indicates 𝐶′

𝐹
(left axis, in

×), the green bar indicates 𝐶′
𝑆

(right axis, in %), defined in §2.2. The y-axis is in the log scale.

Parameters Breakdown

𝑐𝑚: Miss
Cache: ser(K) + deser(K+V) + update
Data Store: deser(K) + read + ser(K+V)

𝑐𝑖 : Invalidation
Cache: deser(K) + delete
Data Store: ser(K)

𝑐𝑢 : Update
Cache: deser(K+V) + update
Data Store: ser(K+V)

Table 1: An example of 𝑐𝑢 , 𝑐𝑖 , and 𝑐𝑚 where either the compute
at the cache or the backend is the bottleneck. ser and deser
refer to serialization and deserialization respectively.

Approximation with 𝐸 [𝑊 ], the expected number of writes
between reads. From §3.2, while the overhead of invalidate
and update depends on 𝑃𝑅 (𝑇 ) and 𝑃𝑅 (𝑇 ), We further intro-
duce a pragmatic formula where we assume 𝑇 → 0. The
formula in §3.2 can be approximated: we measure 𝐸 [𝑊 ], the
expected number of writes between reads, and pick invalidate
if 𝐸 [𝑊 ]𝑐𝑢 < 𝑐𝑚 + 𝑐𝑖 , and update otherwise. To explain, con-
sider a sequence of writes followed by a read. To ensure that
the read retrieves the freshest data, an update policy needs to
send 𝐸 [𝑊 ] number of updates, while an invalidation-based
policy only needs to send the first invalidate (by tracking
previously invalidated keys), skip sending invalidates for sub-
sequent writes, and incur a miss upon the read. Tracking
invalidated keys is feasible because keys are much smaller in
size compared to values. The backend can also just track hot
keys or recent invalidations. This can be done by simply main-
taining a hashmap or storing an extra field in the database.
The decision to invalidate or update depends on the relative
overhead of the two approaches as decided in the formula.

Estimating 𝐸 [𝑊 ] per-key with sketches. We now discuss
how 𝐸 [𝑊 ] can be estimated per key. Exact 𝐸 [𝑊 ] tracking
requires three counters per key: 𝐶1 stores the sum of 𝐸 [𝑊 ]
samples, and𝐶2 stores the number of 𝐸 [𝑊 ] samples.𝐶3 stores
the number of consecutive writes since the last read. To cal-
culate the average 𝐸 [𝑊 ], we divide𝐶1 by𝐶2. Upon write, we
increment 𝐶3. Upon read after a write, we add 𝐶3 to 𝐶1 and
increment 𝐶2 by 1. However, the overhead of exact tracking

increases linearly with the number of keys and could become
prohibitively expensive in practice.

One can lower storage overhead by estimating 𝐸 [𝑊 ] with
Count-min sketch [15], which approximates read and write
counters per key with a 2-D array. 𝐸 [𝑊 ] can be estimated by
dividing the number of writes by the number of reads. Upon
reading or writing, the key passes multiple hash functions
(one for each row) and is hashed into different columns of
each row. To approximate the count for a key, we similarly
hash the key multiple times and calculate the minimum of
counters read from different columns that the key is hashed
into. However, when the number of keys increases, one might
obtain false positives due to hash collision.

To improve accuracy, we propose a modified Top-K sketch
for better approximating the number of reads and writes. We
keep the exact count for Top-K most accessed keys while
using the Count-min sketch to approximate the count for the
rest of the keys. This ensures that we get precise tracking for
hot keys. A key can be promoted from Count-min sketch to
Top-K if it becomes hot, or demoted from Top-K to Count-
min sketch if it becomes cold.

3.4 Evaluation
How well does our policy perform? To evaluate our policy
(Adpt.), we repeat the simulations performed in §2.2 with
only throughput as the objective. We compare our policy
against 6 baselines: TTL-expiry, TTL-polling, always-update
(Up.), always-invalidate (Inv.), along with 2 hypothetical poli-
cies. Adpt.+C.S assumes that the data store has knowledge of
which keys are present in the cache; this enables it to send up-
dates and invalidates only to relevant data objects. Comparing
Adpt. with Adpt.+C.S once again evaluates our assumption
about being able to evaluate freshness for different keys indi-
vidually and additively (§2.1). The second hypothetical policy
(Opt.) is an omniscient policy that has complete knowledge
of both the cache contents and future requests and is optimal.

We evaluate our policy on 4 workloads; 3 from §2.1, and a
fourth that contains a 50-50 mix of two Poisson workloads,
one that is read-heavy and another that is write-heavy. These
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Figure 6: Comparison of Latency, Prediction Accuracy, and Storage Saving across multiple sketches.

workloads occur when sharing a cache across multiple appli-
cations, as is common practice today [12]. Figure 5 presents
the results. We draw three conclusions: (1) reacting to writes
provides significantly lower overheads than TTL-based poli-
cies, (2) our policy equals or outperforms naive update and
invalidation-based policies. (3) while knowing the cache state
can improve the overhead, our assumption about treating indi-
vidual objects as independent and taking freshness decisions
on a per-object basis is largely justified.

How well do sketches approximate 𝐸 [𝑊 ] while lowering
overhead? Overhead and accuracy of various sketches are
presented in Figure 6. Importantly, sketches do not need to
determine the precise value of 𝐸 [𝑊 ]; they only need to decide
whether 𝐸 [𝑊 ]𝑐𝑢 < 𝑐𝑖+𝑐𝑚 (so it tolerates some inaccuracies in
𝐸 [𝑊 ] estimation). We draw three observations: (1) The over-
head of looking up 𝐸 [𝑊 ] and maintaining the sketches for
Top-K sketch and Count-min Sketch is negligible compared
to the network delay. (2) Top-K sketch leads to good accuracy
in deciding whether to invalidate or update. Count-min sketch
can sometimes make wrong predictions. (3) Count-min sketch
leads to the largest space saving followed by Top-K sketch.
We suggest using the Top-K sketch to track 𝐸 [𝑊 ] as it has
high accuracy with significant space savings.

4 Related Work
TTL has been widely used [5, 7, 8, 10, 11, 19–21, 26, 28, 29]
and studied for in-memory caches: cache eviction [29], esti-
mating MRC [26], modeling hit ratio [22], adaptive TTL for
content delivery [6]. However, prior works do not specifically
target data freshness, or provide a framework for understand-
ing the overhead of maintaining freshness.

Cache invalidation has been explored: Meta [25] relies
on invalidation to bound staleness at a larger timescale. Mu-
Cache [32] explores cache invalidation for microservice graphs
without blocking other accesses. Recent blog [17] from Meta
documents its system Polaris that detects and monitors in-
consistencies introduced with cache invalidation. [24, 30]
explores whether to invalidate or materialize cached views
for web caches. However, to the best of our knowledge, none
of the prior works explore a quantitative model of data fresh-
ness based on bounded staleness; or an adaptive algorithm

deciding between invalidation and update to maintain data
freshness with a staleness bound 𝑇 .

5 Conclusion and Open Questions
In this paper, we conclude that the path to efficient real-time
cache freshness is by reacting to writes using updates and in-
validates. While we developed a theoretical model to show the
potential of such an approach, several key questions remain:

Ensuring guaranteed delivery of updates and invalidates.
For TTL, data is guaranteed to expire after a specified time.
However, lost or re-ordered updates and invalidates may cause
a cached object to remain in a stale state in the cache indefi-
nitely [17]. This problem becomes more challenging in dis-
tributed and replicated caches since messages now have to
be reliably multi-cast to the target caches. In the presence of
resharding or node failures, ownership of keys can change.
How to ensure that invalidation or update is propagated to the
nodes that own the keys is itself a challenge.

Extending freshness formulation to many-to-many caching
relationship. Our algorithm (§3.2) assumes that one cached
object can be mapped to one data store object. While this cov-
ers many workloads, some cached objects come from multiple
reads from the backend data store. For example, the client
can cache a web page, which requires rendering multiple data
objects from the backend data store, such as figures, HTML
fragments, and tables. We believe we can extend our algo-
rithm: a cached object has bounded staleness if its constituent
parts satisfy the staleness bound, and 𝐶𝐹 and 𝐶𝑆 depend on
the dependencies of the data read and written.

Combining freshness with eviction decisions. We believe
renewed attention to cache freshness will also uncover inter-
esting questions on how to factor freshness decisions into
cache eviction algorithms. While prior works have explored
leveraging TTLs in eviction [29], it is unclear how invali-
dation and updates can be co-designed with eviction since
eviction algorithms can monitor the current value of the TTL
timer, but cannot know when an invalidation or update is
likely to arrive.
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