
Towards Structurally Extensible Host Network Stacks
Kumar Kartikeya Dwivedi

EPFL
Rishabh Iyer

UC Berkeley
Sanidhya Kashyap

EPFL

Abstract

Several recent proposals have shown that re-architecting the
host network stack can significantly improve throughput and
reduce tail latency. Yet these designs remain confined to
user-level stacks or invasive kernel forks, both of which are
impractical for production deployment.

We ask: Can host network stacks be made sufficiently exten-
sible to support the incremental deployment of new designs?
To answer this question, we identify the key capabilities re-
quired by such designs and propose the design of FlexNet, a
framework that enables developers to implement new network
stack designs as extensions to existing production network
stacks.

CCS Concepts

• Software and its engineering → Operating systems; Vir-
tual machines; Automated static analysis.
ACM Reference Format:
Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya Kashyap.
2025. Towards Structurally Extensible Host Network Stacks. In
The 24th ACM Workshop on Hot Topics in Networks (HotNets ’25),
November 17–18, 2025, College Park, MD, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3772356.3772386

1 Introduction

To address the widening disparity between network line rates
and CPU clock frequencies, several recent efforts have pro-
posed re-designs of the host software network stack to increase
throughput and reduce tail latency. For example, NetChan-
nel [8] and Snap [18] introduce abstractions that allow for
dynamic mapping of flows to CPU cores, enabling the net-
work stack to scale better in response to changing network
loads. Similarly, dataplane operating systems such as IX [7],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’25, College Park, MD, USA
© 2025 ACM.
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772386

Shinjuku [14], and Shenango [20] eschew interrupts in favor
of busy-polling loops that run to completion to ensure lower
tail latencies. Collectively, these designs improve throughput
by at least an order of magnitude over the traditional Linux
kernel network stack and reduce tail latency from several
milliseconds to single-digit microseconds.

Unfortunately, these innovations have seen limited adop-
tion in production environments.1 We argue that the primary
reason for this limited adoption stems from the rigidity of
current production network stacks, such as the Linux net-
work stack. These stacks are largely monolithic and lack the
flexibility to support new designs as incremental extensions.
As a result, developers must prototype their designs either
as user-level stacks—which often require re-implementing
critical kernel functionality like firewalling and multi-tenant
isolation—or as deep, out-of-tree kernel forks that rapidly
diverge from mainline and impose heavy maintenance costs.
Both approaches ultimately fragment the software ecosystem,
and impose high integration costs, thus deterring adoption
despite clear performance advantages.

Can host network stacks be made sufficiently extensible to
support the incremental deployment of new designs?

We draw inspiration from the success of mechanisms, such
as eBPF [10] and pluggable congestion control modules [4]
that have allowed developers to extend the Linux network
stack in a modular and non-invasive manner. Unfortunately,
these mechanisms are insufficient to realize new network
stack designs, such as NetChannel or IX, because they only
enable what we call functional extensibility (i.e., changes to a
component of the transport layer, adding or removing headers,
etc). They do not permit what we call structural extensibility,
i.e., capabilities such as dynamically mapping computation
for flows to different cores, as in NetChannel, or changing
execution contexts to replace interrupts with busy-polling
run-to-completion threads, as in IX.

We therefore ask: How can we make host network stacks
structurally extensible? To answer this question, we ana-
lyze four recent designs—NetChannel, Snap, Shenango, and
Shinjuku—to identify the extensibility they require. Our anal-
ysis shows that their modifications to traditional stacks fall

1To our knowledge, Snap [18] remains the only such design deployed in
production, partly because a hyperscaler like Google can afford a dedicated
maintenance team. Our goal is to simplify the deployment of such designs
and reduce the need for such teams.

https://doi.org/10.1145/3772356.3772386
https://doi.org/10.1145/3772356.3772386


HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedi et al.

into two key capabilities: (1) the ability to encapsulate packet-
processing logic into modular, schedulable units that can
execute flexibly across cores and contexts, and (2) the ability
to dynamically allocate compute resources to these units in
response to network load and performance goals.

We propose the design of FlexNet: a coroutine-based frame-
work that enables structural extensibility of host network stacks.
Our key insight is to encapsulate the processing logic for each
packet in the network stack within a coroutine [9], effectively
making it a self-contained unit of computation. Since corou-
tines can be suspended and resumed at arbitrary points, they
allow developers to modularize packet processing logic into
fine-grained units of computation. FlexNet comes with a pro-
grammable scheduler that allows developers to define how and
where these coroutines execute, thus enabling them to relocate
packet-processing logic across cores and execution contexts,
and realize their desired structural extensibility. The FlexNet
framework is designed to be backward compatible with the
Linux network stack and leverages the eBPF framework to
ensure that any structural extensions introduced do not violate
the integrity of the kernel.

We believe that FlexNet can accelerate innovation in host
network stack design by allowing developers to rapidly pro-
totype, test, and iterate on their ideas. We believe that the
ideas underlying FlexNet can also generalize beyond the net-
work stack and enable structural extensibility in other kernel
subsystems, such as memory management and storage, much
like eBPF has evolved from packet filtering to support tracing,
security, and performance monitoring.

2 Requirements for Structural Extensibility

We now analyze the extensibility requirements of recently
proposed network stacks and discuss why existing mechanisms
are insufficient to support them.

2.1 What do high-performance network stacks look like?

Traditional kernel network stacks (e.g., Linux) are largely
interrupt-driven, with fixed mappings between the network
processing pipeline and host CPU resources. While operators
can modify the flow-to-CPU assignment through mechanisms
like RSS, RPS, RFS, or XPS [5], these configurations are
static and typically provisioned for peak demand, which makes
them inefficient under variable loads.

To understand the key requirements for high-performance
network stacks, we analyze two recent streams of work that
demonstrate significant improvements in throughput and tail
latency. Note, we focus only on the structural aspects of these
designs. Some of these designs also introduce changes to the
functionality of the network stack, such as replacing TCP [18]
or changing the interface that it exposes to applications [7].
We consider those functional changes to be orthogonal to

the structural extensibility requirements we discuss here, and
hence out of scope.
Ex. #1: Dynamic host network stacks. NetChannel and Snap
address the rigid binding between flows and CPUs in Linux
by introducing abstractions—channels in NetChannel and
engines in Snap—which decouple flow assignment from CPU
resources. This enables both designs to dynamically allocate
and de-allocate compute resources for the network stack, and
thus better adapt to changes in network load. Both designs
also allow multiple channels or engines to be assigned to the
same kernel thread or to be isolated on separate threads,
allowing the stack to provide low-latency guarantees for
specific flows, if required. Finally, both designs also move
send-side processing from application cores to cores dedicated
for network processing. This is done to ensure predictable
performance and to avoid interference between competing
applications, as can occur when all processing is performed
on application cores and multiple applications are running on
the same core [8].
Ex. #2: Dataplane operating systems. Dataplane OSes such
as Shenango and Shinjuku seek to minimize tail latency for
microsecond-scale networked applications by co-designing
the network dataplane with the CPU scheduler and integrating
application logic directly into the dataplane. While they too,
like Snap and NetChannel, dynamically scale core alloca-
tions, these designs make two additional structural changes.
First, they eschew interrupts in favor of busy-polling, where
dedicated cores continuously poll NIC queues and assign
incoming packets to worker threads. This reduces latency
and avoids the overhead of interrupt handling. Second, they
use run-to-completion scheduling, where application request
processing is integrated with network packet processing on
the same core. This allows each request to complete without
preemption, simplifying scheduling decisions and improving
end-to-end tail latency.

2.2 Distilling Common Design Requirements

Our analysis of these high-performance stacks reveals that im-
proving performance requires finer-grained control over what
computation is executed where and when. More specifically,
developers need two complementary capabilities:
R1. Control over work encapsulation. Developers need the
ability to decompose the network stack’s processing logic into
fine-grained, independent units of computation that can be
scheduled separately. This is essential, for example, to isolate
flows from each other, or to relocate send-side processing
from application cores to dedicated network cores to avoid
head-of-line blocking. Said differently, developers need fine-
grained work encapsulation to precisely specify what parts of
the computation should be scheduled independently.



Towards Structurally Extensible Host Network Stacks HotNets ’25, November 17–18, 2025, College Park, MD, USA

R2. Control over work scheduling. Developers also need
control over how network stack computation is mapped to
compute resources and scheduled across them, to determine
where and when the computation runs. This control includes
two key capabilities: the ability to bind computation to spe-
cific software execution contexts such as threads or interrupt
contexts (R2.1), as well as the ability to dynamically scale
hardware CPU allocation in response to fluctuating network
load (R2.2). Importantly, given today’s line rates, the network
stack must support such resource allocation at the granu-
larity of a few microseconds without incurring significant
performance overheads.

Finally, any framework that provides these capabilities must
also satisfy a third requirement: R3. Kernel safety. Specifi-
cally, the framework must guarantee that developer-provided
extensions preserve the integrity of both the network stack and
the kernel as a whole. This is essential because extensions run
as part of the kernel to ensure minimal performance overhead,
and so any safety violations can compromise the entire system,
leading to crashes or hangs that affect all applications.

2.3 Why Existing Mechanisms are Insufficient

Existing mechanisms (e.g., eBPF) and proposals (e.g.,
Syrup [15]) are fundamentally limited as they cannot re-
define the unit of work being scheduled. The state-of-the-art
approach, Syrup, treats scheduling as a matching problem be-
tween predefined work units (packets) and execution contexts
(cores). While such a design enables flexible flow assign-
ment policies, it prevents developers from implementing the
fine-grained work encapsulation required by advanced net-
work stack designs, such as the ability to relocate send-side
processing. FlexNet addresses this limitation by making the
unit of work itself programmable. FlexNet’s coroutine-based
abstraction allows developers to encapsulate an entire request-
response lifecycle (spanning Rx, user-space processing, and
Tx) into a single, schedulable entity, enabling holistic control
over complete network transactions.

We now discuss how these requirements can be met through
the use of extensibility while retaining all its advantages,
i.e. safety and speed of iteration.

3 Structural Extensibility with FlexNet

We now present our proposed design for FlexNet, a coroutine-
centric framework for enabling structural extensibility in the
network stack. While FlexNet is still under development, the
design we describe here highlights the key ideas and trade-offs,
and we hope it can serve as a foundation for further discussion
and future work.

Figure 1 presents an architectural overview of FlexNet,
which consists of three main components each paired with
a corresponding developer-provided input. 1 An in-kernel

Figure 1: Architectural overview of FlexNet. Exec denotes execu-
tors. While the figure shows only a single layer of queues and
executors, FlexNet allows composing multiple such layers.

extension that encapsulates the packet-processing logic for
each packet as a coroutine. Developers specify, as input, the
suspension points to insert within the coroutine, defining
where execution should pause and resume. 2 User-defined
executors that pull suspended coroutines from queues and
resume them on worker threads. Developers implement these
executors to encode their desired scheduling policy and de-
termine how coroutines are mapped to threads. 3 A CPU
scheduler that manages CPU cores for network stack threads.
Developers specify a policy to allocate and de-allocate cores
based on signals from the network stack, such as queue depths
or sojourn times.

Each of these three components fulfills a specific require-
ment from §2: the in-kernel extension enables developers
modularize the processing logic into fine-grained units of
computation that can be scheduled independently (R1), user-
defined executors provide control over scheduling decisions
(R2.1), and the CPU scheduler allows dynamic provisioning
of CPU resources in response to load (R2.2). Finally, we
believe that all three components can be implemented atop the
eBPF framework in Linux, which provides a safe execution
environment for kernel extensions. This, in turn, satisfies the
safety requirement (R3).



HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedi et al.

The design of FlexNet is inspired by the modular, staged
structure of modern programmable NICs and hardware net-
work processors. In hardware, packet processing is imple-
mented as a pipeline of discrete stages, each operating on
per-packet state and passing control explicitly to the next. By
representing packet processing as a sequence of coroutine
frames and suspension points, with each stage encapsulating
a well-defined unit of work, FlexNet seeks to mimic these
successful hardware abstractions in software.

We now discuss each of the FlexNet’s components in detail.

3.1 Safety vs. Flexibility in Coroutine Suspension Points

Once we choose to encapsulate the processing logic for each
packet in a coroutine, a key design decision is determining
the granularity at which to allow suspension points. In prin-
ciple, coroutines allow suspension at arbitrary points in the
processing pipeline, enabling extremely fine-grained control
over scheduling. However, exposing suspension at too fine
a granularity is problematic. This is because internal steps
within the pipeline (e.g., the TCP layer) often hold locks and
assume uninterrupted execution, so suspending mid-operation
could violate kernel invariants and compromise safety. On the
other hand, allowing suspension at too coarse a granularity
limits flexibility and prevents developers from implementing
designs such as NetChannel or Snap, which require control
over specific protocol stages.

In FlexNet, we propose a middle ground by exposing sus-
pension points at protocol layer boundaries: L2, L3, L4, and
the socket layer. This level of abstraction is expressive enough
to support the use cases described in §2, while hiding low-
level implementation details—such as ownership transfer and
synchronization—that are specific to the internal workings of
each layer. As a result, FlexNet shields developers from such
internal complexities while providing the flexibility to control
scheduling at semantically meaningful points in the stack. For
example, send-side processing after buffer allocation can be
relocated by inserting a suspension point after the socket layer
and resuming the coroutine on a worker thread.

FlexNet exposes two kinds of suspension points to develop-
ers. The first is a simple co_yield, which suspends execution
of the coroutine and the network stack, and returns control
to the userspace application. This is useful, for instance, to
realize run-to-completion processing of requests, as in systems
like Shenango or Shinjuku. The second is co_await queue_-
insert(pkt_ctx, idx), which enqueues the coroutine into
the queue identified by idx and then suspends it. This allows
the coroutine to be resumed later by an executor, which selects
coroutines from queues based on a user-defined policy.

Developers define suspension points in FlexNet through a
high-level programming model similar to the one provided by
eBPF. Developers can choose one of three templated pipelines:

1 int rx_coro(struct xdp_md *ctx) {
2 u32 idx = pick_queue_idx(ctx); // Pick queue idx based on flow
3 co_await queue_insert(ctx, idx); // Stash in Rx queue
4 eth_rcv(ctx); // L2
5 ip_rcv(ctx); // L3
6 tcp_rcv(ctx) // L4
7 socket_rcv(ctx); // Socket layer
8 return 0;
9 }

Listing 1: Example showing how user can insert a suspension
point in the Rx pipeline before layer L2. pick_queue_idx()
defines how flows are mapped to queues.

1 void exec_coro(void) {
2 // On every invocation, drain a coroutine from each queue.
3 for (int i = 0; i < N; i++) {
4 coro_t coro = queue_pop_front(i);
5 if (coro)
6 coro.resume();
7 }
8 }

Listing 2: Example of an executor draining queues in round-
robin order.

Rx, Tx, or Rx+Tx—and annotate it with suspension points.
Listing 1 shows an example of the Rx pipeline; examples of
the other pipelines are provided in Section 4.

Each pipeline is structured as a sequence of protocol layers,
where each layer is represented by a function that processes
the packet and returns control to the next layer. Developers
can insert suspension points between these layers using either
the yield() or queue(pkt, idx) statements; the example
uses the latter. Here, the pick_queue_idx(pkt) function (not
shown) selects the target queue for the packet, implementing
the desired mapping policy. This mapping can be stateless—
such as computing a hash over the packet’s five-tuple—or
stateful, such as inspecting all available queues and selecting
the least loaded one.

The annotated pipeline is compiled into an eBPF kernel
extension that uses eBPF maps [1] to implement the queues.
Beyond the standard eBPF safety checks, FlexNet also verifies
that protocol layers are invoked in the correct order, ensuring
that user extensions remain correct.

3.2 Executors for Coroutine Scheduling

FlexNet allows developers to write executors—extensions
responsible for pulling coroutines from queues and resuming
them on worker threads, driving them forward until they either
reach another suspension point or terminate. Listing 2 shows
an example executor that implements a simple round-robin
policy, servicing all non-empty coroutine queues in turn. In
this example, the coro.resume() call resumes a coroutine and
returns control to the executor once the coroutine suspends
again or completes.

Executors give developers fine-grained control over how in-
dividual units of work (encapsulated in coroutines) are mapped
to software execution resources, namely worker threads. This



Towards Structurally Extensible Host Network Stacks HotNets ’25, November 17–18, 2025, College Park, MD, USA

1 void sched_policy() {
2 while (true) {
3 for_each_cpu(cpu) {
4 queue_t queue = queue_array[cpu];
5 u32 depth = queue.length();
6 if (calc_avg(queue, depth) > THRESHOLD) {
7 flexnet_alloc_cpu();
8 kick_worker(cpu);
9 }

10 }
11 sleep(5us); // Poll queue depth every 5 us
12 }
13 }

Listing 3: Example scheduling policy which polls the queue depth
and allocates cores every 5us.

mapping can be adapted to meet different performance goals.
For example, a 1:N mapping (one queue served by multiple
threads) can be used to handle a high-priority or heavily
loaded queue, improving latency and throughput under bursty
conditions. Conversely, an N:1 mapping (multiple queues
served by a single thread), as shown in the example, can
improve CPU utilization by consolidating work when load is
low. Since executors are compiled into eBPF extensions, they
can sleep when idle and can be rescheduled when required.
This allows developers to adjust the number of active worker
threads dynamically; for example, in response to average queue
depths (see the following subsection for an example). Thus,
executors enable developers to tailor scheduling policies to
the specific demands of their applications, while maintaining
precise control over software resource allocation.

3.3 Provisioning cores for the network stack

Lastly, FlexNet implements a CPU scheduler using the sched_-
ext framework [6] to allocate and deallocate CPU cores dedi-
cated to running network stack worker threads. The scheduler
leverages standard kernel mechanisms, such as inter-processor
interrupts (IPIs) and high-resolution per-CPU timers, to ac-
quire or release cores and to time-slice multiple threads on
the same core at microsecond granularity.

Developers can define policies that control when cores are
allocated or released, based on signals from the network stack
such as queue depths or coroutine sojourn times. Since all
extensions run inside the kernel, they can access shared data
structures like the coroutine queues to inform these decisions.
Listing 3 shows an example policy: it polls the queue depth
every 5μs and, if the average depth exceeds a threshold, wakes
a sleeping worker thread and assigns it to a newly allocated
core. In this way, the scheduler dynamically adjusts the number
of cores dedicated to the network stack based on load, ensuring
resources scale with performance demands.

4 Case Studies

We now describe how FlexNet can be used to realize the
motivating cases we discussed in §2.2.

1 int tx_coro(struct xdp_md *ctx) {
2 socket_send(ctx);
3 u32 idx = pick_queue_idx(ctx);
4 co_await queue_insert(ctx, idx);
5 tcp_send(ctx);
6 ip_send(ctx);
7 eth_send(ctx);
8 return 0;
9 }

Listing 4: Inserting suspension points in the Tx data path for
relocating send-side processing as in Snap and NetChannel.

1 int rx_tx_coro(struct xdp_md *ctx) {
2 u32 idx = pick_queue_idx(ctx);
3 co_await queue_insert(ctx, idx);
4 eth_rcv(ctx);
5 ip_rcv(ctx);
6 tcp_rcv(ctx);
7 co_yield();
8 tcp_send(ctx);
9 ip_send(ctx);

10 eth_send(ctx);
11 return 0;
12 }

Listing 5: Combining Rx and Tx for a run-to-completion data
path as in dataplane OSes.

4.1 Host Network Stack (Snap, NetChannel)

Recall that Snap and NetChannel impose two requirements.
First, they require the ability to flexibly assign processing
resources to packet flows, such as assigning multiple worker
threads to process all flows from a single application. Second,
they require relocating send-side processing below the socket
layer to cores dedicated to the network stack.

The first requirement can be satisfied using a combination
of the mapping logic within the coroutine (Listing 1) and
the executor (Listing 2). For example, assume a developer
wants to assign multiple worker threads to process flows from
a high-priority application while consolidating flows from
low-priority onto a single thread. This can be implemented
by inserting a suspension point before the L2 layer, as shown
in Listing 1, and modifying the pick_queue_idx function to
choose a queue based on the application (e.g., using the TCP
port). The developer can then instantiate several executors to
drain coroutines from the high-priority application’s queue,
and a single executor to handle all remaining queues.

The second requirement can be met by inserting a suspen-
sion point in the Tx data path, as shown in Listing 4. Here, the
coroutine suspends after socket buffer copy and gets enqueued
into a queue that is drained by an executor on a dedicated core.
This decouples send-side processing from the application core,
allowing the network stack to complete transmission without
blocking application execution.

4.2 Dataplane OS (IX, Shenango, Shinjuku)

In addition to flexible flow-to-thread mappings, dataplane
OSes eschew interrupts in favor of busy-polling and rely on



HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedi et al.

1 void executor(void) {
2 coro_t coro_arr[N];
3 queue_t queue = queue_array[cpu];
4
5 for (int i = 0; i < N; i++) {
6 retry:
7 coro_arr[i] = pop_next(queue);
8 if (!coro_arr[i]) {
9 busy_poll();

10 goto retry;
11 }
12 }
13 for (i = 0; i < N; i++)
14 coro_arr[i].resume();
15 }

Listing 6: Example executor program that performs busy polling
and batching as in dataplane OSes.

run-to-completion scheduling to achieve low tail latency. De-
velopers can realize run-to-completion scheduling in FlexNet
by encapsulating the Rx and Tx data paths in a single corou-
tine. Listing 5 illustrates such an example—the coroutine first
completes all Rx processing, then yields to the application
in user space using co_yield, before being resumed by the
worker thread that runs Tx processing.

Developers can realize busy-polling using executors that
repeatedly seek to drain coroutines from queues, as shown in
Listing 6. When no coroutines are available, the executor polls
the queue expecting it to become non-empty. This executor
also batches the processing of requests, as is common in
these systems to improve throughput and amortize per-packet
processing costs. Note that in this particular example, each
worker thread polls a single queue, but as shown previously, the
mapping between worker threads and queues can be arbitrary.

5 Discussion

Limitations. What kinds of designs cannot be realized with
FlexNet? The answer is twofold.

First, as discussed in §3, FlexNet’s current design does
not support inserting suspension points within the internal
logic of a protocol layer. As a result, any design that requires
splitting functionality inside a layer cannot be implemented
using FlexNet. For example, TAS [16] separates the fast and
slow paths within the TCP layer and runs each on dedicated
CPU cores. To realize TAS with FlexNet, the Linux TCP
stack would first need to be refactored to expose the fast
and slow paths as separate functions, allowing them to be
invoked independently within FlexNet’s templated pipelines.
Once this refactoring is done, developers can use FlexNet
to dynamically schedule the fast and slow paths on different
cores.

FlexNet also does not support designs that require changes
to both the functionality and the structure of the stack, such
as replacing the entire TCP layer with a new transport pro-
tocol. This is expected, since FlexNet is designed to support
structural changes, not functional modifications. As a result, it

can only be applied to designs where the desired functionality
already exists within the Linux kernel stack.
Implementation challenges. As discussed in §3, FlexNet is
still under development. We outline here a few key implemen-
tation challenges that must be addressed to integrate FlexNet
into a production kernel like Linux.

Since the Linux kernel does not natively support corou-
tines, we will need to build runtime support for coroutines in
the kernel from scratch. Supporting FlexNet’s programming
model will also require extending the LLVM compiler [3]
to lower eBPF programs written as coroutines in C++ to
LLVM IR intrinsics. Finally, we will need to augment the
eBPF instruction set [2] to ensure that eBPF coroutines can
be compiled correctly to run on existing kernel infrastructure.
Performance overheads. Given today’s line rates, a natural
question is whether encapsulating work in coroutines intro-
duces significant compute or memory overhead. While this
cannot be answered definitively until FlexNet is fully imple-
mented, we believe these overheads can be kept low. We plan
to use stackless coroutines to encapsulate packet processing
logic. Since stackless coroutines do not maintain per-thread
state, they impose minimal memory overhead. Further, they
avoid full context switches on suspension and resumption,
keeping compute overhead low. Instead, the compiler identi-
fies only the live variables that span suspension points—in
our examples, just the packet itself. As a result, they incur no
memory overhead when suspending and resuming.

6 Related work

Extensibility has long been a goal in network stack design.
For example, Click [17] let users compose modular elements
into customizable packet-processing pipelines with a simple
declarative language. Similarly, prior efforts [11, 12, 19, 22]
modularized the TCP layer to enable custom ordering or
congestion control policies. However, all these systems extend
the stack’s functionality rather than modify its structure to
improve performance, which is the focus of our work.

The most closely related work to FlexNet is Syrup [15],
which added user-defined scheduling policies to the Linux
kernel. While we build on this idea, FlexNet offers a more
general mechanism for structural changes through coroutines.
Unlike Syrup, which restricts scheduling control only to
two points in the network stack, FlexNet lets developers
insert suspension points wherever needed, enabling finer-
grained control over packet processing. As discussed in §2,
this supports a broader set of use cases, such as relocating
send-side processing below the socket layer or combining Rx
and Tx into a single coroutine.



Towards Structurally Extensible Host Network Stacks HotNets ’25, November 17–18, 2025, College Park, MD, USA

7 Future Directions

Extending FlexNet to other subsystems. We believe that the
key ideas underlying FlexNet can generalize to other kernel
systems. We discuss two such examples below, in the memory
management and storage subsystems.

Hermit [21] is a remote memory management system that
reduces swapping overhead through three techniques: (1) op-
timistically fetching pages over RDMA on cache misses, (2)
aggressively batching non-latency-critical operations, and (3)
dynamically scaling cores for memory reclaim. While asyn-
chronous RDMA operations are out of scope for FlexNet, its
primitives are well suited for controlling batching and scaling.
Non-critical operations like reclaim can be encapsulated as
coroutines, with FlexNet’s scheduling support used to batch
and distribute them across cores, as in Listing 6.
blk-switch [13] proposes a storage stack architecture in-

spired by network switches, featuring: (1) multiple per-core
queues with prioritized dequeues, (2) dynamic steering of
IO requests to other cores, and (3) fine-grained IO sched-
uling at both request and thread levels. These goals align
naturally with FlexNet’s primitives: encapsulating IO requests
as coroutines and managing queues with custom scheduling
policies implemented in executor extensions can enable a
similar design.
Performance and liveness verification. Tail latency viola-
tions and throughput bottlenecks often arise from or manifest
as spikes in queue depths and sojourn times. By making
all queues in the network stack explicit and programmable,
we believe that FlexNet provides an abstraction suited for
diagnosing, monitoring, and even verifying such performance
issues. Since each suspension point corresponds to a specific
queue in the kernel, one can envision building tracing tools
that monitor queue depths and sojourn times, as well as formal
verification tools that analyze the queue hierarchy and check
whether a given scheduling policy could violate latency or
throughput targets.

8 Conclusion

In this paper, we asked whether host network stacks can be
made extensible to deploy new design changes incrementally.
From recent designs, we distilled two core capabilities which
are missing—fine-grained encapsulation of work, and dynamic
control over scheduling and CPU provisioning—alongside
the requirement for safety in kernel extensions. We propose
FlexNet, a coroutine-based framework to provide developers
with access to these capabilities through kernel extensions.

9 Acknowledgements

We thank our shepherd Gabor Rétvári, and the anonymous
reviewers for their feedback that greatly improved the paper.

We also thank Paul Chaignon for his feedback on an earlier
version of this paper. This work is supported by the Swiss
National Science Foundation project grant #212884, and the
eBPF Foundation.

References
[1] eBPF Maps. https://docs.kernel.org/bpf/maps.html.
[2] eBPF Instruction Set Specification, v1.0. https://docs.kernel.org/bpf/

standardization/instruction-set.html.
[3] LLVM Coroutines. https://llvm.org/docs/Coroutines.html.
[4] Pluggable Congestion Control Modules in eBPF. https://www.kernel.

org/doc/Documentation/networking/tcp.txt.
[5] Network Stack Scaling with RSS, RPS, RFS, or XPS. https://www.

kernel.org/doc/Documentation/networking/scaling.txt.
[6] BPF Extensible Scheduler Class. https://lore.kernel.org/bpf/

20221130082313.3241517-1-tj@kernel.org.
[7] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and

E. Bugnion. IX: A Protected Dataplane Operating System for High
Throughput and Low Latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014.

[8] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and R. Agarwal.
Towards 𝜇s Tail Latency and Terabit Ethernet: Disaggregating the
Host Network Stack. In Proceedings of the ACM SIGCOMM 2022
Conference, 2022.

[9] M. E. Conway. Design of a Separable Transition-Diagram Compiler.
Communications of the ACM, 1963.

[10] M. Fleming. A thorough introduction to eBPF. https://lwn.net/Articles/
740157, 2017.

[11] B. Ford. Structured Streams: a New Transport Abstraction. In Proceed-
ings of the 2007 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, 2007.

[12] B. Ford and J. R. Iyengar. Breaking Up the Transport Logjam. In
HotNets, 2008.

[13] J. Hwang, M. Vuppalapati, S. Peter, and R. Agarwal. Rearchitecting
Linux Storage Stack for µs Latency and High Throughput. In 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21), 2021.

[14] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis. Shinjuku: Preemptive Scheduling for usecond-scale Tail
Latency. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019.

[15] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis. Syrup:
User-Defined Scheduling Across the Stack. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021.

[16] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krishnamurthy, and
T. Anderson. TAS: TCP Acceleration as an OS Service. In Proceedings
of the Fourteenth EuroSys Conference 2019, 2019.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM Trans. Comput. Syst., 2000.

[18] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer, C. Con-
tavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble, N. Kidd,
R. Kononov, G. Kumar, C. Mauer, E. Musick, L. Olson, E. Rubow,
M. Ryan, K. Springborn, P. Turner, V. Valancius, X. Wang, and A. Vah-
dat. Snap: a Microkernel Approach to Host Networking. In Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019.

https://docs.kernel.org/bpf/maps.html
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://docs.kernel.org/bpf/standardization/instruction-set.html
https://llvm.org/docs/Coroutines.html
https://www.kernel.org/doc/Documentation/networking/tcp.txt
https://www.kernel.org/doc/Documentation/networking/tcp.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://lore.kernel.org/bpf/20221130082313.3241517-1-tj@kernel.org
https://lore.kernel.org/bpf/20221130082313.3241517-1-tj@kernel.org
https://lwn.net/Articles/740157
https://lwn.net/Articles/740157


HotNets ’25, November 17–18, 2025, College Park, MD, USA Dwivedi et al.

[19] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Aminy, and B. Fordy.
Fitting Square Pegs Through Round Pipes: Unordered Delivery Wire-
Compatible with TCP and TLS. In 9th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 12), 2012.

[20] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan.
Shenango: Achieving High CPU Efficiency for Latency-sensitive Data-
center Workloads. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), 2019.

[21] Y. Qiao, C. Wang, Z. Ruan, A. Belay, Q. Lu, Y. Zhang, M. Kim, and
G. H. Xu. Hermit: Low-Latency, High-Throughput, and Transparent
Remote Memory via Feedback-Directed Asynchrony. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
23), 2023.

[22] R. Singha, R. Iyer, C. Liu, C. Terrill, T. Millstein, S. Shenker, and
G. Varghese. If Layering is useful, why not Sublayering? In Proceedings
of the 23rd ACM Workshop on Hot Topics in Networks, 2024.


	Abstract
	1 Introduction
	2 Requirements for Structural Extensibility
	2.1 What do high-performance network stacks look like?
	2.2 Distilling Common Design Requirements
	2.3 Why Existing Mechanisms are Insufficient

	3 Structural Extensibility with FlexNet
	3.1 Safety vs. Flexibility in Coroutine Suspension Points
	3.2 Executors for Coroutine Scheduling
	3.3 Provisioning cores for the network stack

	4 Case Studies
	4.1 Host Network Stack (Snap, NetChannel)
	4.2 Dataplane OS (IX, Shenango, Shinjuku)

	5 Discussion
	6 Related work
	7 Future Directions
	8 Conclusion
	9 Acknowledgements
	References

