Rishabh Iyer

Research Interests	My current research is centered around developing systems and techniques that enable developers to reason precisely about the performance behavior of their code <i>before</i> it is deployed. My dissertation work introduced the notion of latency interfaces: simple, succinct programs that summarize a system's latency behaviour just like semantic interfaces such as code documentation and specifications summarize functionality.		
Education	Ecole Polytechnique Federale de Lausanne (EPFL)	2017-2023	
	Doctor of Philosophy (PhD), Computer Science Thesis: Latency Interfaces for Systems Code Advisors: Prof. George Candea & Prof. Katerina Argyraki		
	Indian Institute of Technology Bombay (IITB)	2013-2017	
	Bachelor of Technology with Honours, Electrical Engineering Thesis: Performance Modelling and Dynamic Scheduling for Heteregeneous Advisor: Prof. Virendra Singh	s ISA Processors	
Professional Experience	Postdoctoral Scholar at UC Berkeley Supervisor: Prof. Sylvia Ratnasamy and Prof. Scott Shenker Working on verifying performance properties of wide-area networks.	March 2024 - Present	
	Postdoctoral Scholar at EPFL	Sep 2023 - Feb 2024	
	Supervisor: Prof. George Candea Worked on a wide range of topics centred around on building systems with pre-	dictable performance behavior	
	worked on a wrate range of topics control around on building systems with pro-		
	Visiting Researcher at UC Berkeley Supervisor: Prof. Sylvia Ratnasamy Worked on Performance Interfaces for Hardware Accelerators	Sep 2022 - Feb 2023	
	Summer Intern at EPFL Supervisor: Prof. Babak Falsafi Ported the QFlex Trace Simulator from QEMU 2.3 to QEMU 2.6	May - July 2016	
Honors &	• Eurosys Roger Needham Dissertation Award	2024	
Awards	• ACM SIGOPS Dennis M. Ritchie Doctoral Dissertation Award	2023	
	Thesis nominated by EPFL for ACM Doctoral Dissertation AwardBest Paper Award	2023 VDAT 2019	
	• EPFL Doctoral Fellowship	2017	
Publications	• Automatically Reasoning About How Systems Code Uses the CPU Cache Rishabh Iyer, Katerina Argyraki, George Candea. Symposium on Operating Systems Design and Implementation (OSDI), 2024. Acceptance rate: 15.6%		
	• Performance Interfaces for Hardware Accelerators Jiacheng Ma, <u>Rishabh Iyer</u> , Sahand Kashani, Mahyar Emami, Thomas Bourgeat, George Candea. Symposium on Operating Systems Design and Implementation (OSDI), 2024. Acceptance rate: 15.6%		
	• Achieving Microsecond-Scale Tail Latency Efficiently with Approximate Optimal Scheduling Rishabh Iyer, Musa Unal, Marios Kogias, George Candea. Symposium on Operating Systems Principles (SOSP), 2023. Acceptance rate: 18.7%		
	The Case for Performance Interfaces for Hardware Accelerators Rishabh Iyer, Jiacheng Ma, Katerina Argyraki, George Candea, Sylvia Ratnasamy. Hot Topics in Operating Systems (HotOS), 2023. Acceptance rate: 26.4%		

• Performance Interfaces for Network Functions Rishabh Iyer, Katerina Argyraki, George Candea. Symposium on Networked Systems Design and Implementation (NSDI), 2022. Acceptance rate: 19.7%
• Bypassing the Load Balancer Without Regrets. Marios Kogias, Rishabh Iyer, Edouard Bugnion. Symposium on Cloud Computing (SoCC), 2020. Acceptance rate: 24.4%
• Classification-Based Scheduling in Heterogeneous-ISA Architectures Nirmal Boran, Dinesh Yadav, <u>Rishabh Iyer</u> . Symposium on VLSI Design and Test (VDAT), 2020. Acceptance rate: 28.7%
• Verifying Software Network Functions with No Verification Expertise

Arseniy Zaostrovnykh, Solal Pirelli, <u>Rishabh Iyer</u>, Luis Pedrosa, Matteo Rizzo, Katerina Argyraki, George Candea.

Symposium on Operating Systems Principles (SOSP), 2019. Acceptance rate: 13.7%

• Performance Modelling and Dynamic Scheduling on Heterogeneous-ISA Architectures Nirmal Boran, Dinesh Yadav, <u>Rishabh Iyer</u> Symposium on VLSI Design and Test (VDAT), 2019. Acceptance rate: 27.3% Awarded Best Paper

• Performance Contracts for Software Network Functions Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Katerina Argyraki, George Candea. Symposium on Networked Systems Design and Implementation (NSDI), 2019. Acceptance rate: 14.7%

• Automated Synthesis of Adversarial Workloads for Network Functions Luis Pedrosa, <u>Rishabh Iyer</u>, Arseniy Zaostrovnykh, Jonas Fietz, Katerina Argyraki. *ACM SIGCOMM Conference (SIGCOMM)*, 2018. Acceptance rate: 18%

TEACHING	CS 522: Principles of Computer Systems (EPFL)	Fall 2019, 2020, 2021, 2022	
Assistantships	CS 305: Software Engineering (EPFL)	Fall 2018	
	MA 207: Analysis 4 - Vector Calculus (EPFL)	Spring 2018, 2019	
	PH 107: Quantum Physics (IITB)	Fall 2014	
Research	• Musa Unal (PhD student at EPFL)	Summer 2022 - Fall 2023	
	Cooperative scheduling for microsecond-scale datacenter applications		
	Second author on publication at SOSP'23.		
	• Jiacheng Ma (PhD student at EPFL)	Fall 2022 - Present	
	Performance interfaces for hardware accelerators		
	Second author on publication at HotOS'23, lead author on publication at OSDI'24.		
	• Kartikeya Kumar Dwivedi (PhD student at EPFL)	Summer 2023 - Present	
	Fast, flexible, and practical kernel extensions		
	Lead author on submission to SOSP'24		
	• Ayoub Chouak (summer intern at EPFL)	Summer 2021	
	Leveraging performance interfaces to identify constant-time violations in cryptographic code		
	Significant contributor to publication at NSDI'22.		
	• Yugesh Kothari (PhD student at EPFL)	Fall 2022	
	Performance interfaces for eBPF offloads in the Linux kernel		
	Significant contributor to the PIX open source tool.		
	• Narek Galstyan (PhD student at UC Berkeley)	Fall 2022 - Present	
	Application-integrated record and replay for distributed systems		
	• Rathin Singla (PhD student at UCLA)	Fall 2022 - Present	
	A verified, extensible transport stack		