
Rethinking the Cost of Distributed Caches
for Datacenter Services

Ziming Mao† Jonathan Ellithorpe‡ Atul Adya‡

Rishabh Iyer† Matei Zaharia† Scott Shenker†∗ Ion Stoica†

†UC Berkeley ‡Databricks ∗ICSI

Abstract
This paper systematically studies the cost impact of distributed
in-memory caches on datacenter services. While memory
used for these caches is often perceived to be expensive, we
find that the resulting CPU savings from these in-memory
caches far outweigh the cost of added memory. In fact, across
a variety of both synthetic and production workloads, we
find that adding distributed in-memory caches can lower total
operating costs by 3 − 4×, even without considering their
latency benefits. These cost savings can vary significantly
across various architectures, such as storage layer caches,
remote lookaside caches, and in-memory linked caches. We
additionally evaluate cost for two emerging scenarios: caching
rich application objects and strongly consistent cache. For
the former, we find that caching application objects provides
outsized benefits compared to their denormalized, key-value-
style variants, up to 8× compared to reading from storage. For
the latter, we observe that even a minimal version check for
consistency can eliminate most of the cost benefits, calling
for new designs for cost-effective consistent cache.

CCS Concepts
• Information systems → Information storage systems; •
Computer systems organization;

Keywords
Caching, Data Freshness, Consistent Cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’25, November 17–18, 2025, College Park, MD, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-2280-6/25/11
https://doi.org/10.1145/3772356.3772388

ACM Reference Format:
Ziming Mao, Jonathan Ellithorpe, Atul Adya, Rishabh Iyer, Matei
Zaharia, Scott Shenker, Ion Stoica. 2025. Rethinking the Cost of
Distributed Caches for Datacenter Services. In The 24th ACM Work-
shop on Hot Topics in Networks (HotNets ’25), November 17–18,
2025, College Park, MD, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3772356.3772388

1 Introduction
In-memory caches are widely used to achieve low latency
in datacenter services that tolerate eventual consistency [5,
14, 39, 48, 50, 51]. Popular implementations include remote
caches like Memcached and Redis [7, 19, 41, 49] which often
serve as lookaside caches. Additionally, many storage systems
natively support automatic caching of popular tables and
rows for fast lookups [17, 37, 40, 42, 47]. More recently,
linked in-memory key-value caches have been proposed to
further reduce latency by avoiding costly network hops, data
(de)serialization, and over-reads [2].

While in-memory caches are valuable for bringing down
service latency and are widely deployed, we find a lack of
research on their monetary cost. While it is well-known that
caches improve performance, the cost impact of these in-
memory caches (beyond performance benefits) for datacenter
services is not well understood. From discussing with prac-
titioners in both the database and systems community, many
believe that the cost of memory in the cloud makes achieving
low latency appear to be expensive [26, 30, 31]. DRAM is
approximately 32× more expensive than storage [35], and
cloud operators reported that memory can constitute 50% of
server cost [29] and 37% of total cost of ownership [33].

This paper presents a systematic cost study of cache de-
ployments for datacenter services with three new observa-
tions. First, adding these low-latency in-memory caches can
reduce demand for CPU by so much that it not only makes
up for the added cost of the memory but significantly re-
duces total operating costs of the application. Across both
open-sourced production traces from Meta [7] and traces of a
large scale data platform at Databricks, operating costs can
be largely reduced by 3 − 4×. Additionally, we compare the
cost savings across various caching architectures and show

1

https://doi.org/10.1145/3772356.3772388
https://doi.org/10.1145/3772356.3772388

HotNets ’25, November 17–18, 2025, College Park, MD, USA Mao et al.

that cost can be further reduced by another 2× using linked in-
memory caches which saves CPU in the application itself for
data (de)serialization. Compared to provisioning the backend
data store with more memory, deploying external in-memory
caches brings surprisingly large amount of cost saving by
saving CPU cores.

Second, we observe that caching benefits rich object work-
loads disproportionately. While the caching research com-
munity has focused on traditional key-value scenarios, rich
object workloads are also prevalent in practice, and often
emerge organically as application and storage schemas evolve
over time. For example, in our experience at Databricks and
prior large-scale deployments elsewhere, simple read paths
gradually accumulate logic to join, filter, or verify various
metadata. As a result, even ostensibly simple operations (e.g.,
retrieving metadata for a user-defined table) translate to mul-
tiple expensive storage queries. In a representative case—our
internal data governance platform, Unity Catalog [13], which
offers a unified namespace for data assets and employs an
entity–relationship data model—serving a single rich object
can require as many as eight SQL queries. Our key insight
is that linked in-memory caches– embedded directly in the
application–offer outsized benefits for these workloads, 2×
greater cost savings than a denormalized, key-value-style vari-
ant of the same application. Rich object workloads exhibit a
fundamentally different caching profile and requirements than
traditional key-value scenarios. While the typical strategy to-
day is for these applications to read directly from storage
(expressing application logic in a sequence of SQL queries),
given the massive cost benefits, these applications deserve
dedicated architectural attention with better caches.

Third, we observe that emerging requirements for consis-
tent caches can nullify most of the cost benefits of these
distributed caches. In Databricks, driven by customer require-
ments, there is a need to scale services with low latency while
preserving consistency (e.g. linearizability). Continuing with
the cost study, we observe that even a minimal version check
in storage for reads can significantly increase cost. Matching
the cost advantages of an eventually consistent cache while
maintaining strongly consistent read is challenging. We argue
that this need not be the case, and cost-efficient strongly con-
sistent distributed caches should be considered an important
area of future work.

2 Background and motivation
Distributed caches are deployed to reduce latency in datacen-
ter services, yet their contribution to monetary cost has been
unclear. We observe that practitioners often associate adding
caches with additional cost due to the added DRAM. This
work begins with the simple question: do distributed caches
add or save cost, if so, how much? (§2.1). We additionally

take the cost study to two emerging scenarios: caching rich ap-
plication objects (§2.2) and strongly consistent caches (§2.3),
across several cache architectures (§2.4).

2.1 The cost of distributed caches
Caches are widely deployed to improve performance for dat-
acenter services [2], as storage systems are typically slower
in comparison. While it is known that caches reduce backend
load, memory is expensive [34, 55] and constitutes a signifi-
cant portion of datacenter cost [29, 33]. It is unclear whether
in-memory caches might cost more than the load saved at the
backend. Practitioners often assume that distributed caches
improve latency at an additional cost [26, 30, 31], or they
are unaware of the full impact distributed caches have on
cost. Moreover, since caches can be deployed in various
ways (§2.4), such as storage layer cache, remote cache, or
application-linked cache, it remains unclear which deploy-
ment strategy has a greater cost impact and how this influ-
ences resource usage (e.g., compute and memory). Conse-
quently, determining the optimal caching architecture for cost
savings is a challenge.

While cost trade-offs have been studied in HPC jobs, where
caching working set reduces job makespan, the datacenter ser-
vices differ in two respects: multi-tenant services run continu-
ously, and resource billing is decoupled across CPU, memory,
and storage (compared to node-based allocation in HPC). De-
spite their prevalence, distributed caches and their cost impact
on datacenter services have not been systematically studied
and reported.

2.2 The need for caching rich objects
Caching literature has been largely focused on workloads for
simple key and value pairs [41, 49, 50]. For instance, the Meta
traces [1, 7] have a median value size of approximately 10
bytes with approximately 70% reads; the Twitter traces [49]
have a median value size of 230 bytes and mixed read-write
patterns. These traces reflect classic key–value access pat-
terns—individual put, get, and delete operations on small
items. While Redis supports caching data structures such as
lists, it does not support graphs, nested structures, or any ob-
ject with internal semantics. Although research prototypes
have added richer semantics such as transactional consistency
[38], production caches are still deliberately lightweight and
single-operation–oriented.

However, rich application object workloads are prevalent
in practice. These objects have internal application-specific
semantics. A single request to retrieve an object (e.g. table
metadata) gets translated to multiple operations, such as re-
trieving permission, dependencies, constraints, and data lin-
eage. Each piece of this information is stored in separate
structured tables in the backend, accessible via SQL. After re-
trieval, the application logic decides the return result to client

2

Revisiting Cache Freshness for Emerging Real-Time Applications HotNets ’25, November 17–18, 2025, College Park, MD, USA

App
Server

Read / Write

Storage

(a) Base

App
Server

Write

Storage

Cache
Read

Miss

(b) Remote

App
Server

Write

Storage

Cache
Local
Read

(c) Linked

App
Server

Write

Storage

Cache
Version
check

Local
Read

(d) Linked+Version
Figure 1: Architecture comparisons. Different components (application server, cache, storage) are services that span multiple nodes.

based on the values retrieved. Often, these application logics
cannot be easily expressed as simple computations and often
involve semantics that do not fit neatly into basic data struc-
tures. These application objects can also be “parametized"
based on each request. For example, a dashboard call such as
“top-𝑁 user-relevant logs in the past 𝑇 minutes" is parameter-
ized and assembled on the fly by joining log rows, severity
tags, and ownership metadata— which are difficult to express
in fixed key-value blobs. These complex application logic
can also subject to updates by developers. Since traditional
caches cannot express application-level logic, the most com-
mon approach to supporting applications with rich objects is
to express application requirements in a sequence of storage
layer queries (e.g. SQL) that executes on every request and
rely on applications to process and compose records. Unlike
traditional key-value scenarios where values are small, the
combined retrieved records tend to be large, on the order of
hundreds of KBs or even MBs.

2.3 The need for consistent cache
While caches are traditionally used for services that tolerate
eventual consistency (e.g. social media and web applications),
many emerging distributed applications require strong consis-
tency—particularly linearizable reads that always reflect the
latest write. For instance, Unity Catalog, which centralizes ac-
cess control and auditing user data, requires linearizable reads
for correctness yet is also expected to offer low latencies for
a real-time user experience. Likewise, a system in Databricks
that lets customers schedule and execute SQL queries on
elastic compute clusters, is tuned for fast responses but also
requires strongly consistent session state as any inconsistency
can yield incorrect query behavior. These requirements are
not unique to Databricks: other large-scale companies such
as Dropbox [44], Google [10], and Meta [18] have also re-
ported similar requirements, and recent work has highlighted
the need for strong consistency in latency-critical domains
such as financial trading [9, 15] and online ad bidding [53].
However, for these scenarios, the common approach is to read
directly from storage, bypassing the cache, as caches typically
cannot provide data consistency.

2.4 Caching architectures
Storage layer caches (Base) Figure 1a We define storage

layer caches as those which are natively managed by the
storage system, such as row or block-level caches that are
colocated with the storage nodes. They serve primarily to
reduce latency and improve throughput, since serving records
from memory is orders of magnitude faster than disk. While
storage layer caches save applications from needing to man-
age copies of data, they can be more expensive to access since
they incur up-front overheads for query processing in storage.
Typically, only popular rows or records are cached in storage,
since the storage is unaware of application semantics.

Remote caches (Remote) Figure 1b Remote distributed
caches are used by applications to cache frequently accessed
data such as popular query results, or database records. Ex-
amples include Memcached and Redis [7, 19, 41, 49], and
are typically designed to offer relatively low latency read and
write operations. Remote caches have the advantage of being
shareable by multiple applications interested in the same data,
and so can make more economical use of expensive memory
resources. However, being remote means that applications
add a network hop on the serving path and incur CPU cost
for remote access and data (de)serialization.

Linked caches (Linked) Figure 1c Linked caches are simi-
lar to remote caches, but instead of remote to the application
server, they are linked directly into the application as a li-
brary [2]. To avoid replicating the cache in every application
server, linked caches are typically sharded [3] so that each
server handles only a partition of the cache. Compared to
remote caches, linked caches improve latency by eliminating
remote data fetches, and also save CPU resources by avoiding
data (un)marshalling overheads and the overreads problem [2].
However, since these caches are not shared, each application
incurs additional memory costs for its own linked cache if the
same data is requested across multiple applications.

Linked cache with version check (Linked+Version) Fig-
ure 1d For emerging applications that require consistent reads
(§2.3), the typical approach is for users to read directly from

3

HotNets ’25, November 17–18, 2025, College Park, MD, USA Mao et al.

storage. We describe and compare a simple baseline for main-
taining data consistency: checking the data version upon each
read. When a read request is issued, the application server
concurrently issues a version check to the storage system (or
a separate service [44]) and waits for its reply before return-
ing the requested data. The version check contains only the
key, therefore more lightweight than retrieving the full value.
After the read verifies the matching data version, the cache
read can return the cached data to the clinet.

3 Hypotheses
This section outlines four hypotheses on how caches affect
the overall cost of datacenter services.

Caches save compute, offsetting DRAM costs. Since work-
loads are often skewed [49], adding extra memory can reduce
CPU usage by minimizing communication between appli-
cation servers, storage, and remote cache. CPU savings can
be impactful because proto (de)serialization, which are com-
putationally expensive [2], consume a substantial portion of
CPU cycles in production clusters [27]. We hypothesize that
reducing communication overhead can lower compute costs
to potentially offset the expense of additional DRAM. To
contextualize these costs, on GCP, 1 vCPU core costs approx-
imately $17 per month, while 1 GB of memory costs about $2
per month [16]. Storage, required for persistence regardless,
costs $2 per 100 GB per month. While we initially expect that
compute savings would merely offset the cost of DRAM, we
were surprised to find that the compute savings were substan-
tial enough to drive significant overall cost reductions (§5.3)
for datacenter services.

More distributed in-memory caches, less storage layer
caches We observe that there has not yet been a cost study
comparing different caching architectures (§2.4). From dis-
cussions with industry practitioners, a common practice is to
provision more memory (storage layer cache) in the backend
to improve performance. In Databricks, by default, backend
storage is provisioned with tens of GBs of memory per in-
stance for storage layer cache. We hypothesize that by provi-
sioning more distributed caches external to storage, we can
reduce the memory allocation for storage layer caches. This
approach can allow for a more efficient memory allocation
while potentially maintaining the same or even smaller total
memory footprint to achieve a target performance.

Caching rich objects reduce query processing at storage
For rich object workloads, applications often have to execute
multiple read queries (e.g., SQL statements that retrieve rows
from multiple tables) to storage, even if the queried data
(e.g. rows) is already cached in storage. The overhead of
such “query amplification" might lead to significant compute
cost in query processing in the backend. We hypothesize that

caching external to storage can alleviate this query processing,
and the caches are best colocated with the application so that
applications can directly operate the cached data in-memory.

Version check increases storage overhead To enable con-
sistent cache, we originally expect version checks to be simple
and incur minor cost in backend, which contains only the key
queried. However, we find that might not hold true for mod-
ern distributed storage systems (§5.5), where even a version
check upon read can incur query processing and RPC com-
munication overhead, largely removing the cost benefit of
caching.

4 Theoretical Model
We develop a simple theoretical model. We focus on linked
caches but the approach can extend to remote caches.

0.0 0.5 1.0
Zipfian Alpha

5

10

15

20

C
os

t s
av

in
g

(x
)

(a) Zipfian alpha 𝛼

5 10 15
Number of Replicas

2.5

5.0

7.5

10.0

C
os

t s
av

in
g

(x
)

(b) Number of replicas 𝑁𝑟

Figure 2: The effect of varying the number of replicas 𝑁𝑟 and
Zipfian alpha 𝛼 on cost saving. Comparing Linked (𝑠𝐴 = 8GB.
𝑠𝐷 = 1GB) with Base (1GB of in-storage cache).

Let the cache size in the app server be 𝑠𝐴 and the cache size
in the storage system be 𝑠𝐷 . A miss in the linked cache or the
storage layer cache incurs a cost of 𝑐𝐴 and 𝑐𝐷 per request. To
estimate 𝑐𝐴 and 𝑐𝐷 , we empirically measure the CPU cores
used and divide that by the request rate. Let 𝑁𝑟 be the number
of replicas, and 𝑀𝑅(𝑥) be the miss ratio with a cache size
𝑥 , The total cost is: 𝑇 = 𝑄𝑃𝑆 · (𝑀𝑅(𝑠𝐴) · 𝑐𝐴 +𝑀𝑅(𝑠𝐴 + 𝑠𝐷) ·
𝑐𝐷) + 𝑐𝑀 · (𝑠𝐴 · 𝑁𝑟 + 𝑠𝐷).

Takeaways We omit derivations for space constraints. We
find that adding a unit of cache at the application leads to
larger cost reduction compared to adding a unit of cache
at the storage system, or

��� 𝜕𝑇𝜕𝑠𝐴 ��� > ��� 𝜕𝑇𝜕𝑠𝐷 ���. This effect is more
pronounced with higher workload skew (Figure 2a). This
means we should provision more linked cache and less storage
layer cache. The optimal cache allocation is to use as much
linked cache as possible, up to where the marginal benefit of
adding cache equals the marginal cost of a unit of memory,
or when

��� 𝜕𝑇𝜕𝑠𝐴 ��� = 0. Surprisingly, even when memory becomes
expensive (up to 40× than the current cost) or caches have
more replication (larger 𝑁𝑟 , Figure 2b), adding caches still
saves cost.

4

Revisiting Cache Freshness for Emerging Real-Time Applications HotNets ’25, November 17–18, 2025, College Park, MD, USA

5 Evaluation
We validate our hypotheses (§3) and theoretical model (§4)
by comparing designs on synthetic and production workloads.
We first show that the CPU cores saved by adding distributed
caches far outweigh the provisioned memory (§5.3). Next, we
highlight that caching rich application objects brings outsized
cost benefits (§5.4), up to 8× compared to directly reading
from storage. Lastly, we find that to support consistent cache,
even a minimal version check can remove most of the benefits
(§5.5) due to the added overhead in backend storage. These
observations point to future caching research directions in
supporting these emerging workloads.

5.1 Experiment
Cache The remote cache and the application are imple-

mented as gRPC services [46]. Each application server is
provisioned with 6GB of memory for cache.

Database We used TiDB [24] as a representative distributed
database, with 3 TiKV pods and 3 TiDB pods. Each TiKV
pod is provisioned with 15GB of memory. These TiKV pods
rely on block caches for caching popular rows [45].

Cost model Total cost is based on compute (vCPU cores)
and memory (GB) used, multiplied by their unit costs on
GCP [16]. Although cloud providers charge per-VM-minute,
most production platforms today are provisioned according
to peak CPU utilization. Lower steady-state CPU demand
maps directly to smaller VM shapes or fewer replicas when
auto-scalers trigger on compute utilization. While practical
constraints like VM sizes and the need for overprovisioning
can slightly skew results, we believe custom VM shapes,
such as those supported by GCP [22], and advancements in
resource disaggregation [4, 23] can help mitigate these issues.

5.2 Workloads
Synthetic workloads: We use 100K keys with Zipfian ac-

cess pattern (𝛼 = 1.2 [49]). We vary the read ratio 𝑟 from 50%
to 99%, and the value size from 1KB to 1MB.

Open-sourced workloads: We use traces from Meta [1, 7],
which have 30% writes with the median value ≈ 10 bytes.
The trace contains reads and writes over key-value pairs.

0.1 10.0 1000.0
Value size (KB)

0

25

50

75

100

P
er

ce
nt

ile

P50=23KB

(a) Value size

10
1

10
3

10
5

Frequency

0

50

100

P
er

ce
nt

ile

P50: 11

(b) Access Frequency
Figure 3: Analysis of Unity Catalog Trace distribution

Production workloads: We use production traces from
an internal data governance service Unity Catalog [13] in
Databricks (Figure 3). Unity Catalog models data using a hier-
archical namespace. At the top is the metastore, which defines
a three-level identifier— catalog.schema.table—and
tracks metadata, ownership, and privileges. Within a metas-
tore, catalogs group related domains (for example by busi-
ness unit) and contain schemas; schemas then hold securable
objects such as tables, views, and functions. Privileges are
granted to principals (users, groups, service principals) on
any level, and inherit downward. The workload is read-heavy
(≈93%), handling approximately 40K complex queries per
second (QPS). The median value size is ≈ 23KB with large
values at the tail. getTable is the most common opera-
tion and incurs most cost, which retrieves data governance
and access control information about a particular table. get-
Table translates to up to 8 SQL queries directed at multiple
tables in the database—such as permissions, constraints, and
privileges.

50% 90% 95% 99%
Read Probability (%)

25

50

75

100
R

el
at

iv
e

to
ta

l c
os

t (
%

)
Base
Remote
Linked
Linked+Version

(a) Read Ratio

1 KB 10 KB 100 KB 1 MB
Value Size

0

25

50

75

100

R
el

at
iv

e
to

ta
l c

os
t (

%
)

Base
Remote
Linked
Linked+Version

(b) Value Size
Figure 4: Comparison of total cost for different architectures
based on varying value size and read ratio.

Base Linked
+Version

Remote Linked
0

25

50

75

100

R
el

at
iv

e
to

ta
l c

os
t (

%
)

(a) Unity Catalog-KV

Base Linked
+Version

Remote Linked
0

25

50

75

100

R
el

at
iv

e
to

ta
l c

os
t (

%
)

(b) Meta
Figure 5: Cost comparison of Unity Catalog-KV and Meta.

5.3 Compute saved by caches largely exceed
the cost of added DRAM

We compare cost for synthetic workload in Figure 4. Com-
pared to Base, Linked demonstrates significant cost savings,
7.3× for large values (1MB) and a 3.9× for small value sizes
(1KB), since larger value incurs more (de)serialization. We
observe significant cost savings of Remote and Linked for
Unity Catalog-KV and Meta (Figure 5) as well. Remote has
less cost saving than Linked, due to CPUs needed for gRPC
communication between application and remote cache.

5

HotNets ’25, November 17–18, 2025, College Park, MD, USA Mao et al.

1 KB 10 KB 100 KB 1 MB
Value Sizes

0

200

400

C
P

U
 C

or
es

Storage
App Server

(a) Base

1 KB 10 KB 100 KB1024 KB
Value Sizes

0

100

200

C
P

U
 C

or
es

Remote Cache
Storage
App Server

(b) Remote

1 KB 10 KB 100 KB 1 MB
Value Sizes

0

50

100

C
P

U
 C

or
es

Storage
App Server

(c) Linked

1 KB 10 KB 100 KB 1 MB
Value Sizes

0

100

200

C
P

U
 C

or
es

Storage
App Server

(d) Linked+Version
Figure 6: Comparison of CPU usage at app server, remote cache and storage based on varying value size.

Base Linked
+Version

Remote Linked
0

25

50

75

100

R
el

at
iv

e
to

ta
l c

os
t (

%
)

(a) Unity Catalog-Object - Cost
Figure 7: Running Unity Catalog where reading rich objects re-
quires issuing multiple SQL statements, mimicking production.

In Figure 6, we present a breakdown of relative compute
cost at the cache and the storage layer. As the value size in-
creases, writes become more expensive and the cost at the
storage layer required to serve these requests constitutes a
larger portion of the total cost. Among the CPU cycles spent
in the database, 40 − 65% of compute is spent on managing
connection, query processing, and execution planning. The
rest is spent executing key-value lookups and communication
(e.g. replication and executing queries), which accounts for
10 − 40% of cycles. For Linked, preparing and issuing read
or write requests to storage accounts for most CPU cycles at
the application (≈ 60%), followed by communication between
client and the application server (≈ 31%), and the remain-
ing cycles are spent on application server servicing requests,
including reading from the local cache. Across the runs, mem-
ory contributes 6−22% of total cost for Linked, and 1−5% for
Base (due to higher compute cost). Therefore, compute saved
by these caches largely exceed the cost of added DRAM.

5.4 Caching rich objects brings outsized cost
savings.

We present two versions for Unity Catalog: (1) Unity Catalog-
Object (Figure 7): each read request translates to multiple
SQL statements to compose a rich application object (how
Unity Catalog works in production). (2) Unity Catalog-KV
(Figure 5): each read request is executed as a single key-value
lookup, assuming a heavily denormalized schema which has
all needed information (e.g. permission, constraints, privi-
leges) in a single row. We note that Unity Catalog-KV is
significantly simplified and only reflects the data accessing

logic: actual applications often need to operate on intermedi-
ate results, such as conditionally accessing different sets of
tables based on user permissions.

Comparing (2) to (1) shows that real-world applications
benefit significantly more from caching due to handling large,
complex application objects. Specifically, we observe larger
savings in Unity Catalog-Object compared to Unity Catalog-
KV as caching application objects directly saves the applica-
tion server multiple SQL queries from querying the object,
widening the cost benefits (by up to 2×). We expect the cost
difference to be larger in practice when factored into more
application logic in data retrieval decisions. By storing the
fully materialized object in a linked cache, we eliminate query
amplification entirely, thereby reducing CPU usage in storage.

5.5 Version checks removes most cost benefits
We observe that maintaining data consistency nullifies most
cost benefits. Comparing Linked+Version (Figure 6d) with
Linked (Figure 6c), we observe that version checks upon read
significantly increases the storage load. Even a seemingly
trivial version check—returning the row’s 8-byte version col-
umn—still traverses the main read path: the SQL front-end
parses and plans the query, TiDB’s transaction layer validates
Raft leases, and the request is sent over gRPC to TiKV, which
fetches the full row and ships it back. The extra computation
and communication erase most of the cache’s cost savings. A
key-value store could sidestep some of this overhead—version
metadata can be read with a GET—but doing so forfeits SQL
features such as joins, and transactional semantics, and still
incurs a network round-trip and consensus validation (e.g.
a read quorum) in replicated deployments. A RPC-bypass
design (e.g., leveraging on-NIC atomics) could eliminate this
overhead; investigating that is future work.

6 Open challenges and future directions
Extending cost benefits to consistent cache Many appli-

cations with strong consistency requirements rely on reading
directly from storage, forfeiting the latency and cost benefits
of distributed caches. Even minimal version checks signifi-
cantly erode these benefits. We believe that future caches can
do better — for example, by leveraging techniques built on

6

Revisiting Cache Freshness for Emerging Real-Time Applications HotNets ’25, November 17–18, 2025, College Park, MD, USA

top of auto-sharders that efficiently provide strong ownership
over key ranges [3] to optimize away per-read version checks.
Exploring this approach could unlock significant potential for
consistent and cost-effective distributed caching.

In addition to addressing the inefficiencies of per-read ver-
sion checks, another critical challenge arises: delayed writes.
Even with strong ownership guarantees that help optimize
consistency checks, delayed writes can lead to correctness
issues that compromise consistency between the cache and
storage. For instance, consider the following scenario: (1) an
application sends a write to storage, but the write is delayed;
(2) a different instance of the cache, perhaps due to resharding
or node failure, reads the current value from storage; and (3)
the delayed write eventually succeeds, leaving the cache and
storage out of sync. Developing cost-effective mechanisms to
ensure both consistency and correctness in such cases repre-
sents an exciting avenue for future exploration.

A dedicated architecture for caching application objects
We demonstrated that applications with rich objects that are
computationally expensive to reconstruct gain significantly
more from caching than applications with smaller, simpler
key-values. While most existing research has focused on the
latter [34, 49, 50], we believe caching for rich objects repre-
sents a promising direction for future exploration, especially
given its significant cost benefits. Large objects introduce
unique challenges, such as partial eviction of objects, handling
fine-grained updates while maintaining snapshot consistency,
and efficiently managing memory and state during resharding
or replication. Handling the internal semantics of application
objects is challenging, and we believe that caching these ob-
jects is best done with linked caches due to cost benefits and
that applications can directly operate on them. Addressing
these challenges to realize these cost benefits requires caches
dedicated for rich application objects.

7 Related work
Distributed caches and cost Kangaroo [34] considers caching

tiny objects on flash. This paper targets DRAM caches and
shows that they, too, can offer significant cost savings; SSD
caches may further improve cost. [2] argues that linked caches
can avoid (de)serialization. However, none of the prior work
investigates whether in-memory caches reduce the total oper-
ating cost across various architectures and workloads.

Maintaining data consistency TTL has been widely used [6–
8, 11, 12, 20, 21, 25, 43, 49, 50] and studied for in-memory
caches. Cache invalidation has been explored [18, 28, 32,
36, 52, 54]. However, to the best of our knowledge, none of
the prior work explores consistent caches. We believe that
extending cost benefits to caches with stronger consistency
guarantees presents a new class of research challenges.

8 Conclusions
This work represents the first step in quantifying the impact of
adding distributed in-memory caches on cost across a variety
of caching architectures for datacenter services. We discuss
several emerging scenarios—caching rich application objects
and consistent caches—and believe these cost observations
point to significant opportunities for future research.

References
[1] 2024. Evaluating SSD hardware for Facebook workloads.

https://cachelib.org/docs/Cache_Library_User_Guides/cachebench-
fb-hw-eval. Accessed: 2024-06-22.

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast
key-value stores: An idea whose time has come and gone. In Proceed-
ings of the Workshop on Hot Topics in Operating Systems. 113–119.

[3] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek,
Vishesh Khemani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri,
Jason Hunter, et al. 2016. Slicer:{Auto-Sharding} for datacenter appli-
cations. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 739–753.

[4] Marcos K Aguilera, Emmanuel Amaro, Nadav Amit, Erika Hunhoff,
Anil Yelam, and Gerd Zellweger. 2023. Memory disaggregation: Why
now and what are the challenges. ACM SIGOPS Operating Systems
Review 57, 1 (2023), 38–46.

[5] Microsoft Azure. 2025. Azure Cache Pricing - Microsoft Azure. https:
//azure.microsoft.com/en-us/pricing/details/cache/ Accessed: 2025-01-
12.

[6] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai,
and Ramesh Sitaraman. 2018. Adaptive TTL-based caching for content
delivery. IEEE/ACM transactions on networking 26, 3 (2018), 1063–
1077.

[7] Benjamin Berg, Daniel S Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, et al. 2020. The {CacheLib} caching engine: De-
sign and experiences at scale. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). 753–768.

[8] Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. 2014.
Exact analysis of TTL cache networks. Performance Evaluation 79
(2014), 2–23.

[9] Laura Bright and Louiqa Raschid. 2002. Using latency-recency profiles
for data delivery on the web. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 550–561.

[10] Mike Burrows. 2006. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th symposium on Operating
systems design and implementation. 335–350.

[11] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. 2019. TTL-
based cloud caches. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 685–693.

[12] Damiano Carra, Giovanni Neglia, and Pietro Michiardi. 2020. Elastic
provisioning of cloud caches: A cost-aware TTL approach. IEEE/ACM
Transactions on Networking 28, 3 (2020), 1283–1296.

[13] Ramesh Chandra, Haogang Chen, Ray Matharu, Sarah Cai, Jeff Chen,
Priyam Dutta, Bogdan Ghita, Todd Greenstein, Gopal Holla, Peng
Huang, et al. 2025. Unity Catalog: Open and Universal Governance for
the Lakehouse and Beyond. In Companion of the 2025 International
Conference on Management of Data. 310–322.

[14] Yue Cheng, Aayush Gupta, and Ali R Butt. 2015. An in-memory object
caching framework with adaptive load balancing. In Proceedings of the
Tenth European Conference on Computer Systems. 1–16.

7

https://cachelib.org/docs/Cache_Library_User_Guides/cachebench-fb-hw-eval
https://cachelib.org/docs/Cache_Library_User_Guides/cachebench-fb-hw-eval
https://azure.microsoft.com/en-us/pricing/details/cache/
https://azure.microsoft.com/en-us/pricing/details/cache/

HotNets ’25, November 17–18, 2025, College Park, MD, USA Mao et al.

[15] James Cipar. 2014. Trading freshness for performance in distributed
systems. Technical Report. Citeseer.

[16] Google Cloud. 2025. Google Cloud Compute Engine Pricing. https:
//cloud.google.com/compute/vm-instance-pricing Accessed: 2025-01-
06.

[17] Oracle Corporation. 2023. Introducing Oracle True Cache. https:
//blogs.oracle.com/database/post/introducing-oracle-true-cache

[18] Facebook Engineering. 2022. Cache Made Consistent: Improving
Cache Efficiency and Data Freshness. Facebook Engineering Blog
(June 2022). https://engineering.fb.com/2022/06/08/core-infra/cache-
made-consistent/

[19] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5.

[20] Nicaise Choungmo Fofack, Philippe Nain, Giovanni Neglia, and Don
Towsley. 2014. Performance evaluation of hierarchical TTL-based
cache networks. Computer Networks 65 (2014), 212–231.

[21] Alexander Fuerst and Prateek Sharma. 2021. FaasCache: keeping
serverless computing alive with greedy-dual caching. In Proceedings of
the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 386–400.

[22] Google Cloud. n.d.. Create a VM with a Custom Machine
Type. https://cloud.google.com/compute/docs/instances/creating-
instance-with-custom-machine-type. Accessed: 2025-01-14.

[23] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G Shin. 2017. Efficient memory disaggregation with infin-
iswap. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 649–667.

[24] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li
Shen, Liu Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a
Raft-based HTAP database. Proceedings of the VLDB Endowment 13,
12 (2020), 3072–3084.

[25] Jaeyeon Jung, Arthur W Berger, and Hari Balakrishnan. 2003. Modeling
TTL-based Internet caches. In IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications
Societies (IEEE Cat. No. 03CH37428), Vol. 1. IEEE, 417–426.

[26] Farhana Kabir and David Chiu. 2012. Reconciling cost and performance
objectives for elastic web caches. In 2012 International Conference on
Cloud and Service Computing. IEEE, 88–95.

[27] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd annual
international symposium on computer architecture. 158–169.

[28] Alexandros Labrinidis and Nick Roussopoulos. 2003. Balancing per-
formance and data freshness in web database servers. In Proceedings
2003 VLDB Conference. Elsevier, 393–404.

[29] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-
doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. 2023. Pond: Cxl-based memory pooling systems
for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 574–587.

[30] David Lomet. 2018. Cost/performance in modern data stores: How
data caching systems succeed. In Proceedings of the 14th International
Workshop on Data Management on New Hardware. 1–10.

[31] Vigneshwaran Manivelmurugan. 2025. Designing Resilient Systems: A
Guide to Distributed Caching for Modern Applications. International
Journal of Engineering Research & Technology (IJERT) 14, 1 (January
2025).

[32] Ziming Mao, Rishabh Iyer, Scott Shenker, and Ion Stoica. 2024. Revis-
iting Cache Freshness for Emerging Real-Time Applications. In Pro-
ceedings of the 23rd ACM Workshop on Hot Topics in Networks (Irvine,
CA, USA) (HotNets ’24). Association for Computing Machinery, New

York, NY, USA, 335–342. https://doi.org/10.1145/3696348.3696858
[33] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,

Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. Tpp: Transparent
page placement for cxl-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3. 742–755.

[34] Sara McAllister, Benjamin Berg, Julian Tutuncu-Macias, Juncheng
Yang, Sathya Gunasekar, Jimmy Lu, Daniel S Berger, Nathan Beck-
mann, and Gregory R Ganger. 2021. Kangaroo: Caching billions of tiny
objects on flash. In Proceedings of the ACM SIGOPS 28th symposium
on operating systems principles. 243–262.

[35] M. Mead. n.d.. RAM, Hard Drive, and SSD Prices Over
Time. https://azrael.digipen.edu/~mmead/www/Courses/CS180/ram-
hd-ssd-prices.html. Accessed: 2025-01-04.

[36] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. 2013. Scaling memcache at facebook. In 10th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). 385–398.

[37] Percona. 2023. MySQL Caching Methods and Tips. https:
//www.percona.com/blog/mysql-caching-methods-and-tips/

[38] Dan RK Ports, Irene Zhang, Samuel Madden, and Barbara Liskov. 2010.
Transactional consistency and automatic management in an application
data cache. In 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 10).

[39] Ziyue Qiu, Juncheng Yang, Juncheng Zhang, Cheng Li, Xiaosong
Ma, Qi Chen, Mao Yang, and Yinlong Xu. 2023. Frozenhot cache:
Rethinking cache management for modern hardware. In Proceedings of
the Eighteenth European Conference on Computer Systems. 557–573.

[40] RavenDB. 2023. Caching Data: Automatic Database Caching. https:
//ravendb.net/articles/caching-data-automatic-database-caching

[41] Salvatore Sanfilippo and Redis Core Team. 2024. Redis. https://redis.io.
Accessed: 2024-09-20.

[42] Amazon Web Services. 2023. Database Caching Strategies Using Redis.
https://aws.amazon.com/caching/database-caching/

[43] Sari Sultan, Kia Shakiba, Albert Lee, Paul Chen, and Michael Stumm.
2024. TTLs matter: Efficient cache sizing with TTL-aware miss ra-
tio curves and working set sizes. In Proceedings of the Nineteenth
European Conference on Computer Systems. 387–404.

[44] Dropbox Tech Team. 2023. Meet Chrono: Our Scalable, Con-
sistent Metadata Caching Solution. Dropbox Tech Blog.
https://dropbox.tech/infrastructure/meet-chrono-our-scalable-
consistent-metadata-caching-solution Accessed: 2025-03-19.

[45] PingCAP Documentation Team. n.d.. Tune TiKV Memory Per-
formance. https://docs.pingcap.com/tidb/stable/tune-tikv-memory-
performance. Accessed: 2025-01-04.

[46] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. 1993. GRPC: A commu-
nication cooperation mechanism in distributed systems. ACM SIGOPS
Operating Systems Review 27, 3 (1993), 75–86.

[47] Wikipedia. 2023. List of In-Memory Databases. https://
en.wikipedia.org/wiki/List_of_in-memory_databases

[48] Juncheng Yang, Ziming Mao, Yao Yue, and KV Rashmi. 2023. {GL-
Cache}: Group-level learning for efficient and high-performance
caching. In 21st USENIX Conference on File and Storage Technologies
(FAST 23). 115–134.

[49] Juncheng Yang, Yao Yue, and KV Rashmi. 2021. A large-scale analysis
of hundreds of in-memory key-value cache clusters at twitter. ACM
Transactions on Storage (TOS) 17, 3 (2021), 1–35.

[50] Juncheng Yang, Yao Yue, and Rashmi Vinayak. 2021. Segcache: a
memory-efficient and scalable in-memory key-value cache for small
objects. In 18th USENIX Symposium on Networked Systems Design

8

https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://blogs.oracle.com/database/post/introducing-oracle-true-cache
https://blogs.oracle.com/database/post/introducing-oracle-true-cache
https://engineering.fb.com/2022/06/08/core-infra/cache-made-consistent/
https://engineering.fb.com/2022/06/08/core-infra/cache-made-consistent/
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://cloud.google.com/compute/docs/instances/creating-instance-with-custom-machine-type
https://doi.org/10.1145/3696348.3696858
https://azrael.digipen.edu/~mmead/www/Courses/CS180/ram-hd-ssd-prices.html
https://azrael.digipen.edu/~mmead/www/Courses/CS180/ram-hd-ssd-prices.html
https://www.percona.com/blog/mysql-caching-methods-and-tips/
https://www.percona.com/blog/mysql-caching-methods-and-tips/
https://ravendb.net/articles/caching-data-automatic-database-caching
https://ravendb.net/articles/caching-data-automatic-database-caching
https://redis.io
https://aws.amazon.com/caching/database-caching/
https://dropbox.tech/infrastructure/meet-chrono-our-scalable-consistent-metadata-caching-solution
https://dropbox.tech/infrastructure/meet-chrono-our-scalable-consistent-metadata-caching-solution
https://docs.pingcap.com/tidb/stable/tune-tikv-memory-performance
https://docs.pingcap.com/tidb/stable/tune-tikv-memory-performance
https://en.wikipedia.org/wiki/List_of_in-memory_databases
https://en.wikipedia.org/wiki/List_of_in-memory_databases

Revisiting Cache Freshness for Emerging Real-Time Applications HotNets ’25, November 17–18, 2025, College Park, MD, USA

and Implementation (NSDI 21). 503–518.
[51] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi

Vinayak. 2023. FIFO queues are all you need for cache eviction. In
Proceedings of the 29th Symposium on Operating Systems Principles.
130–149.

[52] Haobo Yu, Lee Breslau, and Scott Shenker. 1999. A scalable web cache
consistency architecture. ACM SIGCOMM Computer Communication
Review 29, 4 (1999), 163–174.

[53] Shuai Yuan, Jun Wang, and Xiaoxue Zhao. 2013. Real-time bidding
for online advertising: measurement and analysis. In Proceedings of the
seventh international workshop on data mining for online advertising.

1–8.
[54] Haoran Zhang, Konstantinos Kallas, Spyros Pavlatos, Rajeev Alur,

Sebastian Angel, and Vincent Liu. 2024. {MuCache}: A General
Framework for Caching in Microservice Graphs. In 21st USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 24).
221–238.

[55] Qizhen Zhang, Philip A Bernstein, Daniel S Berger, Badrish Chan-
dramouli, Vincent Liu, and Boon Thau Loo. 2022. Compucache: Re-
mote computable caching using spot vms. In Annual Conference on
Innovative Data Systems Research (CIDR’22).

9

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 The cost of distributed caches
	2.2 The need for caching rich objects
	2.3 The need for consistent cache
	2.4 Caching architectures

	3 Hypotheses
	4 Theoretical Model
	5 Evaluation
	5.1 Experiment
	5.2 Workloads
	5.3 Compute saved by caches largely exceed the cost of added DRAM
	5.4 Caching rich objects brings outsized cost savings.
	5.5 Version checks removes most cost benefits

	6 Open challenges and future directions
	7 Related work
	8 Conclusions
	References

