
Performance Contracts for
Software Network Functions

Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh,
Solal Pirelli, Katerina Argyraki, George Candea

2

Software Network Functions – Pros and Cons
o Increased flexibility ✓

o Reduced capital and operating expenses ✓

o Programming errors ✗

o Unexpected performance behaviour ✗

Dealing with unexpected NF performance

o Goal: Comprehensive understanding of NF’s performance profile

v Operators – capacity planning and anticipate attacks

v Developers – informed development decisions

o Previous work [NSDI’12, NSDI’18, SIGCOMM’18]

v Focus on narrow subset of input workloads

v Offer few completeness guarantees

3

Performance Contracts for NFs

4

Performance

Prediction

o Abstraction for users to parameterize arbitrary input workloads

o Predict performance for workload spec without running NF

o Performance predicted as function of Performance Critical Variables (PCVs)

o Per-packet metrics: Instruction count, memory accesses, latency (cycles)

Workload

Spec

Performance Contract

Outline

o What is a performance contract?

o How does Bolt generate contracts?

o Evaluation & Use-Case

5

Running example

6

Running example

7

Running example

8

Running example

9

Key A

Running example

10

Hash 0

Hash 1

Hash 2

Hash 3

Hash 4

Hash 5

Key B Key C

Key D

MACtable implementation

Performance Contracts Example

11

Performance Contract for MAC_bridge

Traffic Class Performance

Metric: Lines of pseudo-code

Performance Contracts Example

12

Traffic Class Performance
Invalid Header

Valid, DestMAC known
Valid, DestMAC unknown

Performance Contract for MAC_bridge
Metric: Lines of pseudo-code

Performance Contracts Example

13

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Performance Contract for MAC_bridge
Metric: Lines of pseudo-code

Using performance contracts

14

Spec 1: Unconstrained traffic

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Performance Contract for MAC_bridge

Metric: Lines of pseudo-code

Using performance contracts

15

Predicted performance:

3 max _&'(()*)'+* + 100

⇒ 0 = max _&'(()*)'+*

0 = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 30 + 20
Valid, DestMAC unknown 30 + 100

Spec 1: Unconstrained traffic Performance Contract for MAC_bridge

Metric: Lines of pseudo-code

Using performance contracts

16

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Predicted performance:

100

⇒ ! = 0

Spec 2: No hash collisions Performance Contract for MAC_bridge

Metric: Lines of pseudo-code

Using performance contracts

17

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Predicted performance:

20

⇒ ! = 0

Spec 3: Valid, no collisions,

DestMAC known

Performance Contract for MAC_bridge

Metric: Lines of pseudo-code

Using performance contracts

18

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Predicted performance:

20

⇒ ! = 0

Spec 3: Valid, no collisions,

DestMAC known

Contracts quantify performance for all traffic classes of the NF
Users query contract for performance of specific input workloads

Performance Contract for MAC_bridge

Metric: Lines of pseudo-code

Outline

o What is a performance contract?

o How does Bolt generate contracts?

o Evaluation & Use-Case

19

20

Firewall NAT Bridge

NF chain

Generating performance contracts recursively

+ + =

Generating performance contracts recursively
Individual NF

Stateful NF
data structures

Stateless Code

MACtable
put(), get()

21

Generating performance contracts recursively

22

Individual NF

Stateful NF
data structures

(Hard to analyze)*

Stateless Code
(Simple to analyze)*

MACtable
put(), get()

*A.Zaostrovnykh, S.Pirelli, L.Pedrosa, K.Argyraki, G.Candea “A Formally Verified NAT” SIGCOMM 2017

Generating performance contracts recursively

23

o Well defined separation between stateful and stateless NF code*

o NFs typically have well defined, isolated state

o Encapsulate NF state using a library of data structures

o Stateful data structures – Base case of recursive process

o Analyze once, reuse across NFs

*A.Zaostrovnykh, S.Pirelli, L.Pedrosa, K.Argyraki, G.Candea “A Formally Verified NAT” SIGCOMM 2017

Analyzing stateful data structures

24

!"#$%#&'()"*+ = $ -(./0 .')1"0, *+ 30'0",)%($-4, . .

o Cannot account for all possible packet histories -> Path explosion

o BUT, performance of MACtable depends ONLY on number of hash collisions

Performance Critical Variables (PCVs)

25

o Abstract away NF state specificities

o Succinctly summarize impact of packet history, configuration on performance

o Tailor legibility and detail to audience

Traffic Class Performance
Unconstrained 1! + 2

Contract for MACtable_put Contract for MACtable_get

Traffic Class Performance
Key present 2! + 12
Key absent 2! + 7

! = Number of hash collisions
Only PCV required to summarize perf in terms of lines of pseudo-code

Generating Performance Contracts for NFs

26

o Symbolically execute stateless code to traverse all execution paths

o While traversing each path

v Keep track of performance metrics for stateless code

v Plug in contracts for stateful code using path constraints

Generating Performance Contracts for NFs

27

3

Invalid Valid

1

28

Traffic Class Performance
Unconstrained 1! + 2

Contract for MACtable_put

Generating Performance Contracts for NFs

3

Invalid Valid

1

1C + 2

29

Traffic Class Performance
Key present 2" + 12
Key absent 2" + 7
Contract for MACtable_get

Generating Performance Contracts for NFs

3

Invalid Valid

1

1C + 2

DestMAC known DestMAC unknown

2C + 12 2C + 7

30

Generating Performance Contracts for NFs

3

Invalid Valid

1

1C + 2

DestMAC known DestMAC unknown

2C + 12 2C + 7
5 90

31

3

Invalid Valid

1

1C + 2

DestMAC known DestMAC unknown

2C + 12 2C + 7

5 90

Generating Performance Contracts for NFs

Performance Contract for MAC_bridge

! = Number of hash collisions

Traffic Class Performance
Invalid Header 3

Valid, DestMAC known 3! + 20
Valid, DestMAC unknown 3! + 100

Performance Contracts for NF chains

32

o Generate performance contracts for individual NFs in chain

o Pair together traffic classes from communicating NFs

o For each pair - AND respective constraints together

v Equate packet sent by first NF to packet received by second

Performance Contract for NF chains - Example

33

Firewall
Traffic Class Perf

IP opt 20
No IP opt 50

Router

Firewall

Drops packets
with IP options

Fast path – No IP
options

Slow path – IP
options

Router Traffic Class Perf
IP opt 500

No IP opt 60
F1
F2

R1
R2

NF chain
Traffic Class Perf

IP opt 20
No IP opt 110

<F1>
<F2, R2>

Outline

o What is a performance contract?

o How does Bolt generate contracts?

o Evaluation and Use-Case

34

Evaluation setup & methodology
o 4 NFs - NAT, Maglev-like LB, MAC bridge, LPM router

o Analyze NF logic + DPDK + NIC driver*

o Metrics – instructions executed, memory accesses, execution cycles

o Testbed - Intel Xeon E5-2667v2 3.3GHz, 82599ES 10Gb NICs
o Compare predicted vs measured performance for various packet classes

35

Tester Device under Test
*S.Pirelli, A.Zaostrovnykh, G.Candea “A Formally Verified NAT Stack” KBNETS Workshop - SIGCOMM 2018

Predictions for Instruction Count, Memory Accesses

36
Max prediction gap – 7.5% (IC) and 7.6% (MA)

Class Description

LB1 Unconstrained traffic

LB2 Client packet, new flow

LB3
Client packet, existing flow,

unresponsive backend

LB4
Client packet, existing flow,

existing backend

LB5 Heartbeat packets

Results for Maglev-like Load Balancer

P
re

d
ic

ti
o

n
 G

a
p

 (
%

)

Class

0

2

4

6

8

10

LB1 LB2 LB3 LB4 LB5

Instruction Count (IC) Memory Accesses (MA)

Why is there a prediction gap?

37

o Source 1: Trade-off between precision and legibility in PCVs

v Can be overcome by exposing more detail

o Source 2: Differences between analyzed and production code

v Disabled link time optimizations in analyzed code

Use Case – Informed cost-benefit analysis

38

o Example: Bridge with randomized hash table

v Incorporates random key into hash function

v Rehashes all entries with a new key when collisions greater than a threshold

o Question: Where to place threshold?

v Avoid rehashing under normal operation

v Should rehash under attack

39

Use Case – Informed cost-benefit analysis

0.001

0.01

0.1

1

 1 2 3 4 5 6 7 8
103

104

105

106

CC
DF

Pr
ed

ict
ed

 IC

Number of hash collisions

Predicted IC

40Bolt allows operators to visualize the consequences of their decisions

Use Case – Informed cost-benefit analysis

0.001

0.01

0.1

1

 1 2 3 4 5 6 7 8
103

104

105

106

CC
DF

Pr
ed

ict
ed

 IC

Number of hash collisions

Predicted IC
CCDF

Performance Contracts for NFs
o Abstraction for users to parameterize arbitrary input workloads

o Predict performance for workload spec without running NF

o Performance predicted as function of Performance Critical Variables (PCVs)

bolt-perf-contracts.github.io
41

42

o Distiller

o Results – IC, MA

o Results – NF chains

o Results – Latency

o Full Blown Contract

Backup Slides

The Bolt Distiller

43

Back

o Users need to know which traffic classes are likely

o Bolt is a static analysis tool, cannot know probabilities of each traffic class

o The Bolt Distiller

v Input – A representative packet trace

v Output - Execution path taken by each packet & values of PCVs

v Users can then extrapolate the likelihood and query contract accordingly

Predictions for Instruction Count, Memory Accesses

44

Class Description

NAT1 Unconstrained traffic
NAT2 Client packet, new flow
NAT3 Existing flow
NAT4 External, dropped packet
BR1 Unconstrained traffic
BR2 Broadcast traffic
BR3 Unicast traffic

Results for NAT, Bridge

Pr
ed

ic
tio

n
Ga

p
(%

)
Class

0

2

4

6

8

10

NAT1 NAT2 NAT3 NAT4 BR1 BR2 BR3

Instruction Count (IC) Memory Accesses (MA)

Bolt predicts IC & MA accurately, irrespective of NF/Traffic Class

Back

Predictions for NF chains

45

o NFs chained together
v Firewall – drops packets with IP options
v Router – Fast path (No IP options), Slow path (packets with IP options)

Class Description

C1 Packets with IP options
C2 Packets without IP options

0

2

4

6

8

10

C1 C2

Instruction Count (IC) Memory Accesses (MA)

Pr
ed

ic
tio

n
Ga

p
(%

)

Class

Back

Predictions for Latency (Execution Cycles)

46
9x for pathological traffic, 3x for typical traffic

Class Description

LB1 Unconstrained traffic
LB2 Client packet, new flow

LB3 Client packet, existing flow,
unresponsive backend

LB4 Client packet, existing flow,
existing backend

LB5 Heartbeat packets

Results for Maglev-like Load Balancer

O
ve

r-e
st

im
at

io
n

Ra
tio

Class

0

2

4

6

8

10

LB1 LB2 LB3 LB4 LB5

Execution Cycles

Back

47

Predictions for Execution Cycles
Results for LB,NAT, Bridge,LPM

Back

48

Full Blown Contract

Back

